It is well known that the overbreak caused by the blasting damage during tunnel excavation increases costs associated with filling the collapsed area with shotcrete and results in filing of a claim by the contractor. ...It is well known that the overbreak caused by the blasting damage during tunnel excavation increases costs associated with filling the collapsed area with shotcrete and results in filing of a claim by the contractor. This paper outlines a new approach for prediction the overbreak depth during tunnel construction. Hence, firstly excavation damage zone(EDZ) are determined by average specific charge in each zone. Numerical modelling is used to simulate the EDZ around tunnel boundary and the overbreak depth are calculated by the rock strength factor. The predicted overbreak depth compared with observed field data from a case study. The results show that there exists an approximately up to 40% difference between the prediction and the observed volume of overbreak depth. Therefore, the method can be well used to predict the overbreak depth to estimate more precision of shotcrete and concrete volumes in tunnelling cost during design phase.展开更多
Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The res...Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The results show that the propagation phenomenon of stress wave in the surrounding rock of tunnel and the failure process of surrounding rock under explosive stress waves are reproduced realistically by using numerical code RFPA2O; from the failure process of surrounding rock, the place at which surrounding rock fractures is transferred because of tunnel reinforcing, and the rockfall and collapse caused by failure of surrounding rock are restrained by tunnel reinforcing; furthermore, the absolute values of peak values of major principal stress, and the minimal principal stress and shear stress at center point of tunnel roof are reduced because of tunnel reinforcing, and the displacement at center point of runnel roof is reduced as well, consequently the stability of tunnel increases.展开更多
The energy caused by the dynamic impact in mining engineering forth release and spread by the way of seismic waves, monitoring is an effective way for forecasting mine dynamical disasters, such as rockburst and coal a...The energy caused by the dynamic impact in mining engineering forth release and spread by the way of seismic waves, monitoring is an effective way for forecasting mine dynamical disasters, such as rockburst and coal and gas outburst. Three-dimensional dynamic model was built to simulate the propagating progress of seismic waves in the elastoplastic tunnel rock and analyzed the propagating law of perturbation acceleration around tunnel, based on the finite element dynamic analysis software ANSYS/L S-DYNA. The simulation results indicate that: (1) The propagation attenuation of seismic wave is a negative index relationship; (2) The acceleration amplitude of seismic wave decays rapidly in near-field and decays slowly in far-field; (3) When the perturbation is generated in the dead ahead of tunnel, the acceleration of seismic wave become smaller and smaller away from the roadway-rib;(4) The elastic and plastic stress state of tunnel rock is also an important factor for propagation process of wave, the energy of seismic wave is mainly consumed for geometric spreading and plastic deformation in propagation in the elastoplastic medium model.展开更多
Based on the application of practical engineering,propagation processes of explosive waves in rock with water well and tunnel are simulated by ANSYS/LS-DYNA software. The evolution of damage in rock is presented. The ...Based on the application of practical engineering,propagation processes of explosive waves in rock with water well and tunnel are simulated by ANSYS/LS-DYNA software. The evolution of damage in rock is presented. The effect of water on the damage of the concrete slab in a tunnel is compared with damage inflicted without water. The numerical simulation illustrates that water plays an important role in the evolution of damage of the concrete slab in a mine tunnel. In the presence of water in the rock the concrete slab is damaged more severely than without water in rock. The effect of water location in the rock is also considered. It is found that the concrete slab in the tunnel shows various degrees of damage as a function of the different locations of water. Attenuation laws of stress waves over time-space in rock with water are also obtained. Numerical results indicate that,under blast loading,there are three zones in the rock: a crushed zone nearby the explosive charge,a damaged zone and an elastic zone. The conclusions of numerical analysis may provide references for blasting designs and structure protection.展开更多
文摘It is well known that the overbreak caused by the blasting damage during tunnel excavation increases costs associated with filling the collapsed area with shotcrete and results in filing of a claim by the contractor. This paper outlines a new approach for prediction the overbreak depth during tunnel construction. Hence, firstly excavation damage zone(EDZ) are determined by average specific charge in each zone. Numerical modelling is used to simulate the EDZ around tunnel boundary and the overbreak depth are calculated by the rock strength factor. The predicted overbreak depth compared with observed field data from a case study. The results show that there exists an approximately up to 40% difference between the prediction and the observed volume of overbreak depth. Therefore, the method can be well used to predict the overbreak depth to estimate more precision of shotcrete and concrete volumes in tunnelling cost during design phase.
基金Projects(50874020, 50504005 and 50490274) supported by the National Natural Science Foundation of ChinaPorject(2007CB209407) supported by Major State Basic Research Development Program of ChinaProject(2005038250) supported by Postdoctoral Science Foundation of China
文摘Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The results show that the propagation phenomenon of stress wave in the surrounding rock of tunnel and the failure process of surrounding rock under explosive stress waves are reproduced realistically by using numerical code RFPA2O; from the failure process of surrounding rock, the place at which surrounding rock fractures is transferred because of tunnel reinforcing, and the rockfall and collapse caused by failure of surrounding rock are restrained by tunnel reinforcing; furthermore, the absolute values of peak values of major principal stress, and the minimal principal stress and shear stress at center point of tunnel roof are reduced because of tunnel reinforcing, and the displacement at center point of runnel roof is reduced as well, consequently the stability of tunnel increases.
文摘The energy caused by the dynamic impact in mining engineering forth release and spread by the way of seismic waves, monitoring is an effective way for forecasting mine dynamical disasters, such as rockburst and coal and gas outburst. Three-dimensional dynamic model was built to simulate the propagating progress of seismic waves in the elastoplastic tunnel rock and analyzed the propagating law of perturbation acceleration around tunnel, based on the finite element dynamic analysis software ANSYS/L S-DYNA. The simulation results indicate that: (1) The propagation attenuation of seismic wave is a negative index relationship; (2) The acceleration amplitude of seismic wave decays rapidly in near-field and decays slowly in far-field; (3) When the perturbation is generated in the dead ahead of tunnel, the acceleration of seismic wave become smaller and smaller away from the roadway-rib;(4) The elastic and plastic stress state of tunnel rock is also an important factor for propagation process of wave, the energy of seismic wave is mainly consumed for geometric spreading and plastic deformation in propagation in the elastoplastic medium model.
基金Projects 2002CB412705 supported by the National Basic Research & Development Program (973)50579042 by the National Natural Science Foundation of China+1 种基金NCET-05-0215 by the Chinese New-Century Outstanding FellowshipJD102900553 by the Key Laboratories of Beijing Municipal Commis- sion of Education and Science and Technology Commission
文摘Based on the application of practical engineering,propagation processes of explosive waves in rock with water well and tunnel are simulated by ANSYS/LS-DYNA software. The evolution of damage in rock is presented. The effect of water on the damage of the concrete slab in a tunnel is compared with damage inflicted without water. The numerical simulation illustrates that water plays an important role in the evolution of damage of the concrete slab in a mine tunnel. In the presence of water in the rock the concrete slab is damaged more severely than without water in rock. The effect of water location in the rock is also considered. It is found that the concrete slab in the tunnel shows various degrees of damage as a function of the different locations of water. Attenuation laws of stress waves over time-space in rock with water are also obtained. Numerical results indicate that,under blast loading,there are three zones in the rock: a crushed zone nearby the explosive charge,a damaged zone and an elastic zone. The conclusions of numerical analysis may provide references for blasting designs and structure protection.