In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for...In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.展开更多
A digital phase-locked loop (DPLL) based on a new digital phase-frequency detector is presented. The self-calibration technique is employed to acquire wide lock range,low jitter, and fast acquisition. The DPLL works...A digital phase-locked loop (DPLL) based on a new digital phase-frequency detector is presented. The self-calibration technique is employed to acquire wide lock range,low jitter, and fast acquisition. The DPLL works from 60 to 600MHz at a supply voltage of 1.8V. It also features a fraetional-N synthesizer with digital 2nd-order sigma-delta noise shaping, which can achieve a short lock time,a high frequency resolution,and an improved phase-noise spectrum. The DPLL has been implemented in SMIC 0. 18μm 1.8V 1P6M CMOS technology. The peak-to-peak jitter is less than 0. 8% of the output clock period and the lock time is less than 150 times of the reference clock period after the pre-divider.展开更多
This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challen...This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.展开更多
In order to meet the requirements for zero value stability of direct sequence spread spectrum(DSSS) signal processing in high dynamic scenario,digital automatic gain control(AGC) is employed to regulate power.However,...In order to meet the requirements for zero value stability of direct sequence spread spectrum(DSSS) signal processing in high dynamic scenario,digital automatic gain control(AGC) is employed to regulate power.However,conventional AGC causes degradation in the synchronization performance of DSSS receiver.Based on the theoretical analysis of the influence of digital AGC on DSSS signal synchronization,this paper proposes a new AGC algorithm,which is applicable to multi-channel digital DSSS signal receiver.By making power adjustment cycle and synchronization cycle coherent with each other adaptively,the influence of digital AGC on subsequent synchronization processing has been eliminated.Theoretical analysis,simulation results and experimental data verify the validity of the proposed algorithm.By virtue of the proposed algorithm,the influence of digital AGC on DSSS signal synchronization is eliminated.This algorithm applies to an aerospace engineering project successfully.展开更多
基金The National Natural Science Foundation of China(No. 60974116 )the Research Fund of Aeronautics Science (No.20090869007)Specialized Research Fund for the Doctoral Program of Higher Education (No. 200902861063)
文摘In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.
文摘A digital phase-locked loop (DPLL) based on a new digital phase-frequency detector is presented. The self-calibration technique is employed to acquire wide lock range,low jitter, and fast acquisition. The DPLL works from 60 to 600MHz at a supply voltage of 1.8V. It also features a fraetional-N synthesizer with digital 2nd-order sigma-delta noise shaping, which can achieve a short lock time,a high frequency resolution,and an improved phase-noise spectrum. The DPLL has been implemented in SMIC 0. 18μm 1.8V 1P6M CMOS technology. The peak-to-peak jitter is less than 0. 8% of the output clock period and the lock time is less than 150 times of the reference clock period after the pre-divider.
文摘This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.
基金support of the National High Technology Research and Development Program of China(863)(Grant No.2013AA1548)
文摘In order to meet the requirements for zero value stability of direct sequence spread spectrum(DSSS) signal processing in high dynamic scenario,digital automatic gain control(AGC) is employed to regulate power.However,conventional AGC causes degradation in the synchronization performance of DSSS receiver.Based on the theoretical analysis of the influence of digital AGC on DSSS signal synchronization,this paper proposes a new AGC algorithm,which is applicable to multi-channel digital DSSS signal receiver.By making power adjustment cycle and synchronization cycle coherent with each other adaptively,the influence of digital AGC on subsequent synchronization processing has been eliminated.Theoretical analysis,simulation results and experimental data verify the validity of the proposed algorithm.By virtue of the proposed algorithm,the influence of digital AGC on DSSS signal synchronization is eliminated.This algorithm applies to an aerospace engineering project successfully.