The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was e...Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.展开更多
In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landfor...In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.展开更多
This paper describes the use of the Arc/Info and ArcView GIS tools to estimate soil erosion with Universal Soil Loss Equation (USLE).Calculations are be done by using capabilities available.This study start with a dig...This paper describes the use of the Arc/Info and ArcView GIS tools to estimate soil erosion with Universal Soil Loss Equation (USLE).Calculations are be done by using capabilities available.This study start with a digital elevation model (DEM) of Shaanxi,which was created by digitizing contour and spot heights from the topographic map on 1∶250 000 scale and grid themes for the USLE K and C factors.It is note worthy that USLE K can be obtained by adding the K factor as an attribute to a soil theme’s table.The C can be obtained from tables or using the information about land use and management given by USLE program.A land use theme can be used to add the C factors as an attribute field.The purpose of this study is to establish spatial information of soil erosion using USLE and GIS and discuss the analysis of the soil erosion and slope failures in GIS and formulate the possible framework.展开更多
Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertaint...Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.展开更多
Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is...Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is not always sufficient in the reduction of phase noise. In this work, the local SNR-based Goldstein filter is further developed with the improvements in the definition of the local SNR and the adaption of the filtering patch size. What's more, for preventing the loss of the phase signal caused by the excessive filtering, an iteration filtering operation is also introduced in this new algorithm. To evaluate the performance of the proposed algorithm, both a simulated digital elevation model (DEM) interferogram and real SAR deformation interferogram spanning the L' Aquila earthquake are carried out. The quantitative results from the simulated and real data reveal that up to 79.5% noises can be reduced by the new filter, indicating 9%-32% improvements over the previous local SNR-based Goldstein filter. This demonstrates that the new filter is not only equipped with sufficient adaption, but also can suppress the phase noise without the sacrifice of the phase signal.展开更多
Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problem...Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problematic, however, to extend these approaches to the simulation of the slide, collapse and disintegration of the deposits under seismic loading. Contrary to this, a discrete element method (DEM) provides a means to consider large displacement and rotation of the non-continuum. To take the advantages of both methods of continuum and non- continuum analyses, seismic responses of a slope covered by deposits are studied by coupling a twodimensional (a-D) finite difference method and a 2-D DEM, with the bedrock being modelled by the finite difference grids and the deposits being represented by disks. A smooth transition across the boundaries of the continuous/discontinuous domains is obtained by imposing the compatibility condition and equilibrium condition along their interfaces. In the course of computation, the same time-step value is chosen for both continuous and discontinuous domains. The free-field boundaries are adopted for lateral grids of bedrock domain to eliminate the radiation damping effect. When the static equilibrium under gravity load is obtained, dynamic calculation begins under excitation of the seismic wave input from the continuum model bottom. In this way, responses to the earthquake of a slope covered by deposits are analyzed dynamically. Combined with field monitoring data, deformation and stability of the slope are discussed. The effects of the relevant parameters of spectrum characteristic, duration, andpeak acceleration of seismic waves are further investigated and explained from the simulations.展开更多
The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - ...The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - barrier lake - bursts flood disaster chain. The number and the area of landslides in a wide region can be easily obtained by remote sensing technique, while the volume is relatively difficult to obtain because it requires some detailed geometric information of slope failure surface and sub-surface. Different empirical models for estimating landslide volume were discussed based on the data of 107 landslides in the earthquake-stricken area. The volume data of these landslides were collected by field survey. Their areas were obtained by interpreting remote sensing images while their apparent friction coefficients and height were extracted from the images unifying DEM (digital elevation model). By analyzing the relationships between the volume and the area, apparent friction coefficients, and the height, two models were established, one for the adaptation of a magnitude scale landslide events in a wide range of region, another for the adaptation in a small scope. The correlation coefficients (R2) are 0.7977 and 0.8913, respectively. The results estimated by the two models agree well with the measurement data.展开更多
This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vege...This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.展开更多
The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis ...The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis methods, new thoughts and methodologies have been constructed for the Loess Plateau research. This paper introduces the characteristics of DEM data, analyses the development stages of DEM applied in the Loess Plateau research, and discusses its further possible research direction. More discussions are focused on slope spectrum and its concept, as well as the significance in the Loess Plateau research.展开更多
Automatic generalization of geographic information is the core of multi_scale representation of spatial data,but the scale_dependent generalization methods are far from abundant because of its extreme complicacy.This ...Automatic generalization of geographic information is the core of multi_scale representation of spatial data,but the scale_dependent generalization methods are far from abundant because of its extreme complicacy.This paper puts forward a new consistency model about scale_dependent representations of relief based on wavelet analysis,and discusses the thresholds in the model so as to acquire the continual representations of relief with different details between scales.The model not only meets the need of automatic generalization but also is scale-dependent completely.Some practical examples are given.展开更多
Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models ...Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models (DEMs) can be considered the real features that represent depressions in actual landscapes or spurious features that result from errors in DEM creation. In many hydrological and erosion models, all sinks are considered as spurious features and, as a result, these models do not deal with the sinks that represent real depressions. Consequently, the surface runoff and erosion are overestimated due to removing the depressions. Aiming at this problem, this paper presents a new method, which deal with the sinks that represent real depressions. The drainage network is extracted without changing the original DEM. The method includes four steps: detecting pits, detecting depressions, merging depressions, and extracting drainage network. Because the elevations of grid cells are not changed, the method can also avoid producing new fiat areas, which are always produced by the conventional filling methods. The proposed method was applied to the Xihanshui River basin, the upper reach of the Jialingjiang River basin, China, to automatically extract the drainage network based on DEM. The extracted drainage network agrees well with the reality and can be used for further hydrologic analysis and erosion estimation.展开更多
【Title】【Author】【Addresses】1 The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite wel...【Title】【Author】【Addresses】1 The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite well enough because of increasing human disturbance and low data resolution. In this study, the relationship between the treeline pattern and topography was analyzed based on high spatial resolution remote sensing data and a digital elevation model in an area in Changbai Mountain with little human disturbance. Future treeline patterns were also predicted. The results showed that (a) aspects with high solar radiation and low snow cover have a high coverage rate of trees, (b) the peak coverage rate of trees switches from low slopes (〈5°) to medium slopes (5°~25°) as the elevation rises because of the extreme environment, (c) the coverage rate of trees is a function that depends on environmental factors controlled by topography, (d) the future treeline pattern is controlled by new temperature mechanisms, new environmental factors and the reallocation effect of topography. Our research implies that topography controls the treeline pattern and changes in the treeline pattern associated with global warming, due to the effect of global warming on environmental factors. This study may well explain the causes of heterogeneous changes in the treeline pattern in the horizontal direction as well as differences in treeline response to climate warming.展开更多
In this study, the current situation of pluriactivity in mountainous and hilly rural areas of Sichuan province was analyzed using representative sample survey data and natural factor data calculated based on 30 m-reso...In this study, the current situation of pluriactivity in mountainous and hilly rural areas of Sichuan province was analyzed using representative sample survey data and natural factor data calculated based on 30 m-resolution DEM and GIS. Moreover, using logistic regression model, a quantitative analysis was conducted on factors influencing pluriactivity in terms of individuals, households, communities and natural environmental conditions. The results showed that, (1) only 17.77% of rural laborers in mountainous and hilly areas of Sichuan province were engaged in pluriactivity. Geographically, pluriactivity was mainly chosen according to the "proximity principle", and was concentrated in construction and service industries; (2) the following factors have a significant influence on whether rural laborers in hilly areas engage in pluriactivity: gender, number of years of education, marriage, number of laborers and time to towns. Those with little influence include: age, health, family size, arable land per capita and per capita income, whether there are elderly people over 75 years and children less than 3 years. According to the main factors affecting pluriaetivity, the government should enhance vocational skills training for rural laborers in mountainous and hilly areas, especially for female laborers, further improve transport accessibility and encourage rural laborers, especially female laborers to move into pluriactivity to increase the income of farm households.展开更多
This approach represents the relative susceptibility of the topography of the earth to active deformation by means of geometrical distinctiveness of the river networks. This investigation employs the fractal analysis ...This approach represents the relative susceptibility of the topography of the earth to active deformation by means of geometrical distinctiveness of the river networks. This investigation employs the fractal analysis of drainage system extracted from ASTER Global Digital Elevation Model (GDEM-30m resolution). The objective is to mark active structures and to pinpoint the areas robustly influenced by neotectonics. This approach was examined in the Hindukush, NE-Afghanistan. This region is frequently affected by deadly earthquakes and the modern fault activities and deformation are driven by the collision between the northward-moving Indian subcontinent and Eurasia. This attempt is based on the fact that drainage system is strained to linearize due to neotectonic deformation. Hence, the low fractal dimensions of the Kabul, Panjsher, Laghman, Andarab, Alingar and Kocha Rivers are credited to active tectonics. A comprehensive textural examination is conducted to probe the linearization, heterogeneity and connectivity of the drainage patterns. The aspects for these natural textures are computed by using the fractal dimension (FD), lacunarity (LA) and succolarity (SA) approach. All these methods are naturally interrelated, i.e. objects with similar FD can be further differentiated with LA and/or SA analysis. The maps of FD, LA and SA values are generated by using a sliding window of 50 arc seconds by 50 arc seconds (50" × 50"). Afterwards, the maps are interpreted in terms of regional susceptibility to neotectonics. This method is useful to pinpoint numerous zones where the drainage system is highly controlled by Hindukush active structures. In the North-Northeast of the Kabul block, we recognized active tectonic blocks. The region comprising, Kabul, Panjsher, Andrab, Alingar and Badakhshan is more susceptible to damaging events. This investigation concludes that the fractal analysis of the river networks is a bonus tool to localize areas vulnerable to deadly incidents influencing the Earth’s topography and consequently intimidate human lives.展开更多
In Pakistan,the solar analogue has been addressed but its surface geographical parameterization has given least attention.Inappropriate density of stations and their spatial coverage particularly in difficult peripher...In Pakistan,the solar analogue has been addressed but its surface geographical parameterization has given least attention.Inappropriate density of stations and their spatial coverage particularly in difficult peripheral national territories,little or no solar radiation data,non-satisfactory sunshine hours data,and low quality of ground observed cloud cover data create a situation in which the spatial modeling of Extraterrestrial Solar Radiation(ESR) and its ground parameterization got sufficient scope.The Digital Elevation Model (DEM) input into Geographic Information System (GIS) is a compatible tool to demonstrate the spatial distribution of ESR over the rugged terrains of the study domain.For the first time,distributed modeling of ESR is done over the rugged terrains of Pakistan,based on DEM and ArcGIS..Results clearly depict that the complex landforms profoundly disrupt the zonal distribution of ESR in Pakistan.The screening impact of topography is higher on spatial distribution of ESR in winter and considerably low in summer.The combined effect of topography and latitude is obvious.Hence,the model was further testified by plotting Rb (ratio of ESR quantity over rugged terrain against plane surface) against azimuth at different latitudes with different angled slopes.The results clearly support the strong screening effect of rugged terrain through out the country especially in Himalayas,Karakoram and Hindukush (HKH),western border mountains and Balochistan Plateau.This model can be instrumental as baseline geospatial information for scientific investigations in Pakistan,where substantial fraction of national population is living in mountainous regions.展开更多
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.
基金This work was supported by Knowledge Innovation Pro-gram Chinese Academy of Sciences (No. KZCX2-SW-320-3 & KZCX3-SW-425).
文摘Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.
基金Under the auspices of National Youth Science Foundation of China(No.41001294)Key Project of National Natural Science Foundation of China(No.40930531)Research Fund of State Key Laboratory Resources and Environment Information System(No.2010KF0002SA)
文摘In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.
文摘This paper describes the use of the Arc/Info and ArcView GIS tools to estimate soil erosion with Universal Soil Loss Equation (USLE).Calculations are be done by using capabilities available.This study start with a digital elevation model (DEM) of Shaanxi,which was created by digitizing contour and spot heights from the topographic map on 1∶250 000 scale and grid themes for the USLE K and C factors.It is note worthy that USLE K can be obtained by adding the K factor as an attribute to a soil theme’s table.The C can be obtained from tables or using the information about land use and management given by USLE program.A land use theme can be used to add the C factors as an attribute field.The purpose of this study is to establish spatial information of soil erosion using USLE and GIS and discuss the analysis of the soil erosion and slope failures in GIS and formulate the possible framework.
基金supported by the Professional Development Award of the University of Tennessee
文摘Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.
基金Foundation item: Projects(40974006, 40774003) supported by the National Natural Science Foundation of China Project(NCET-08-0570) supported by the Program for New Century Excellent Talents in Universities of China+2 种基金 Proj ect(2011JQ001) supported by the Fundamental Research Funds for the Central Universities of China Project(PolyU 5155/07E) supported by the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China Project(CX2011B 102) supported by the Doctoral Research Innovation of Hunan Province, China
文摘Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is not always sufficient in the reduction of phase noise. In this work, the local SNR-based Goldstein filter is further developed with the improvements in the definition of the local SNR and the adaption of the filtering patch size. What's more, for preventing the loss of the phase signal caused by the excessive filtering, an iteration filtering operation is also introduced in this new algorithm. To evaluate the performance of the proposed algorithm, both a simulated digital elevation model (DEM) interferogram and real SAR deformation interferogram spanning the L' Aquila earthquake are carried out. The quantitative results from the simulated and real data reveal that up to 79.5% noises can be reduced by the new filter, indicating 9%-32% improvements over the previous local SNR-based Goldstein filter. This demonstrates that the new filter is not only equipped with sufficient adaption, but also can suppress the phase noise without the sacrifice of the phase signal.
基金the National Basic Research Program of China (Grant No. 2008CB425802)
文摘Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problematic, however, to extend these approaches to the simulation of the slide, collapse and disintegration of the deposits under seismic loading. Contrary to this, a discrete element method (DEM) provides a means to consider large displacement and rotation of the non-continuum. To take the advantages of both methods of continuum and non- continuum analyses, seismic responses of a slope covered by deposits are studied by coupling a twodimensional (a-D) finite difference method and a 2-D DEM, with the bedrock being modelled by the finite difference grids and the deposits being represented by disks. A smooth transition across the boundaries of the continuous/discontinuous domains is obtained by imposing the compatibility condition and equilibrium condition along their interfaces. In the course of computation, the same time-step value is chosen for both continuous and discontinuous domains. The free-field boundaries are adopted for lateral grids of bedrock domain to eliminate the radiation damping effect. When the static equilibrium under gravity load is obtained, dynamic calculation begins under excitation of the seismic wave input from the continuum model bottom. In this way, responses to the earthquake of a slope covered by deposits are analyzed dynamically. Combined with field monitoring data, deformation and stability of the slope are discussed. The effects of the relevant parameters of spectrum characteristic, duration, andpeak acceleration of seismic waves are further investigated and explained from the simulations.
基金supported financially by the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q03-5)the National Science and Technology Support Plan Project (2009BAK56B05)the National Natural Science Foundation of China (40802072)
文摘The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - barrier lake - bursts flood disaster chain. The number and the area of landslides in a wide region can be easily obtained by remote sensing technique, while the volume is relatively difficult to obtain because it requires some detailed geometric information of slope failure surface and sub-surface. Different empirical models for estimating landslide volume were discussed based on the data of 107 landslides in the earthquake-stricken area. The volume data of these landslides were collected by field survey. Their areas were obtained by interpreting remote sensing images while their apparent friction coefficients and height were extracted from the images unifying DEM (digital elevation model). By analyzing the relationships between the volume and the area, apparent friction coefficients, and the height, two models were established, one for the adaptation of a magnitude scale landslide events in a wide range of region, another for the adaptation in a small scope. The correlation coefficients (R2) are 0.7977 and 0.8913, respectively. The results estimated by the two models agree well with the measurement data.
基金Under the auspices of National Natural Science Foundation of China(No.41001363)
文摘This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.
文摘The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis methods, new thoughts and methodologies have been constructed for the Loess Plateau research. This paper introduces the characteristics of DEM data, analyses the development stages of DEM applied in the Loess Plateau research, and discusses its further possible research direction. More discussions are focused on slope spectrum and its concept, as well as the significance in the Loess Plateau research.
基金ProjectsupportedbytheNationalScienceFoundationofSurveyingandMappingofChina (No .990 1 3) .
文摘Automatic generalization of geographic information is the core of multi_scale representation of spatial data,but the scale_dependent generalization methods are far from abundant because of its extreme complicacy.This paper puts forward a new consistency model about scale_dependent representations of relief based on wavelet analysis,and discusses the thresholds in the model so as to acquire the continual representations of relief with different details between scales.The model not only meets the need of automatic generalization but also is scale-dependent completely.Some practical examples are given.
基金supported by the Project of the National Natural Science Foundation of China (40671025)the Knowledge Innovation Project of the Chinese Academy of Sciences (No. KZCX2-YW-302)
文摘Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models (DEMs) can be considered the real features that represent depressions in actual landscapes or spurious features that result from errors in DEM creation. In many hydrological and erosion models, all sinks are considered as spurious features and, as a result, these models do not deal with the sinks that represent real depressions. Consequently, the surface runoff and erosion are overestimated due to removing the depressions. Aiming at this problem, this paper presents a new method, which deal with the sinks that represent real depressions. The drainage network is extracted without changing the original DEM. The method includes four steps: detecting pits, detecting depressions, merging depressions, and extracting drainage network. Because the elevations of grid cells are not changed, the method can also avoid producing new fiat areas, which are always produced by the conventional filling methods. The proposed method was applied to the Xihanshui River basin, the upper reach of the Jialingjiang River basin, China, to automatically extract the drainage network based on DEM. The extracted drainage network agrees well with the reality and can be used for further hydrologic analysis and erosion estimation.
基金supported by the Special Fund of National Seismological Bureau, China (Grant No. 201208005)the National Natural Science Foundation of China (Grant No. 41171072)the National Grand Fundamental Research 973 Program of China (Grant No. 2009CB426305)
文摘【Title】【Author】【Addresses】1 The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite well enough because of increasing human disturbance and low data resolution. In this study, the relationship between the treeline pattern and topography was analyzed based on high spatial resolution remote sensing data and a digital elevation model in an area in Changbai Mountain with little human disturbance. Future treeline patterns were also predicted. The results showed that (a) aspects with high solar radiation and low snow cover have a high coverage rate of trees, (b) the peak coverage rate of trees switches from low slopes (〈5°) to medium slopes (5°~25°) as the elevation rises because of the extreme environment, (c) the coverage rate of trees is a function that depends on environmental factors controlled by topography, (d) the future treeline pattern is controlled by new temperature mechanisms, new environmental factors and the reallocation effect of topography. Our research implies that topography controls the treeline pattern and changes in the treeline pattern associated with global warming, due to the effect of global warming on environmental factors. This study may well explain the causes of heterogeneous changes in the treeline pattern in the horizontal direction as well as differences in treeline response to climate warming.
基金supported and funded by the National Natural Science Foundation of China(General Program) (Grant NO. 41071350)the Chinese Academy of Sciences Important Directional Knowledge Innovation Project (Grant NO. KZCX2-EW-317)the Chinese Academy of Sciences Western Light Project (Grant NO.09R2340340)
文摘In this study, the current situation of pluriactivity in mountainous and hilly rural areas of Sichuan province was analyzed using representative sample survey data and natural factor data calculated based on 30 m-resolution DEM and GIS. Moreover, using logistic regression model, a quantitative analysis was conducted on factors influencing pluriactivity in terms of individuals, households, communities and natural environmental conditions. The results showed that, (1) only 17.77% of rural laborers in mountainous and hilly areas of Sichuan province were engaged in pluriactivity. Geographically, pluriactivity was mainly chosen according to the "proximity principle", and was concentrated in construction and service industries; (2) the following factors have a significant influence on whether rural laborers in hilly areas engage in pluriactivity: gender, number of years of education, marriage, number of laborers and time to towns. Those with little influence include: age, health, family size, arable land per capita and per capita income, whether there are elderly people over 75 years and children less than 3 years. According to the main factors affecting pluriaetivity, the government should enhance vocational skills training for rural laborers in mountainous and hilly areas, especially for female laborers, further improve transport accessibility and encourage rural laborers, especially female laborers to move into pluriactivity to increase the income of farm households.
文摘This approach represents the relative susceptibility of the topography of the earth to active deformation by means of geometrical distinctiveness of the river networks. This investigation employs the fractal analysis of drainage system extracted from ASTER Global Digital Elevation Model (GDEM-30m resolution). The objective is to mark active structures and to pinpoint the areas robustly influenced by neotectonics. This approach was examined in the Hindukush, NE-Afghanistan. This region is frequently affected by deadly earthquakes and the modern fault activities and deformation are driven by the collision between the northward-moving Indian subcontinent and Eurasia. This attempt is based on the fact that drainage system is strained to linearize due to neotectonic deformation. Hence, the low fractal dimensions of the Kabul, Panjsher, Laghman, Andarab, Alingar and Kocha Rivers are credited to active tectonics. A comprehensive textural examination is conducted to probe the linearization, heterogeneity and connectivity of the drainage patterns. The aspects for these natural textures are computed by using the fractal dimension (FD), lacunarity (LA) and succolarity (SA) approach. All these methods are naturally interrelated, i.e. objects with similar FD can be further differentiated with LA and/or SA analysis. The maps of FD, LA and SA values are generated by using a sliding window of 50 arc seconds by 50 arc seconds (50" × 50"). Afterwards, the maps are interpreted in terms of regional susceptibility to neotectonics. This method is useful to pinpoint numerous zones where the drainage system is highly controlled by Hindukush active structures. In the North-Northeast of the Kabul block, we recognized active tectonic blocks. The region comprising, Kabul, Panjsher, Andrab, Alingar and Badakhshan is more susceptible to damaging events. This investigation concludes that the fractal analysis of the river networks is a bonus tool to localize areas vulnerable to deadly incidents influencing the Earth’s topography and consequently intimidate human lives.
文摘In Pakistan,the solar analogue has been addressed but its surface geographical parameterization has given least attention.Inappropriate density of stations and their spatial coverage particularly in difficult peripheral national territories,little or no solar radiation data,non-satisfactory sunshine hours data,and low quality of ground observed cloud cover data create a situation in which the spatial modeling of Extraterrestrial Solar Radiation(ESR) and its ground parameterization got sufficient scope.The Digital Elevation Model (DEM) input into Geographic Information System (GIS) is a compatible tool to demonstrate the spatial distribution of ESR over the rugged terrains of the study domain.For the first time,distributed modeling of ESR is done over the rugged terrains of Pakistan,based on DEM and ArcGIS..Results clearly depict that the complex landforms profoundly disrupt the zonal distribution of ESR in Pakistan.The screening impact of topography is higher on spatial distribution of ESR in winter and considerably low in summer.The combined effect of topography and latitude is obvious.Hence,the model was further testified by plotting Rb (ratio of ESR quantity over rugged terrain against plane surface) against azimuth at different latitudes with different angled slopes.The results clearly support the strong screening effect of rugged terrain through out the country especially in Himalayas,Karakoram and Hindukush (HKH),western border mountains and Balochistan Plateau.This model can be instrumental as baseline geospatial information for scientific investigations in Pakistan,where substantial fraction of national population is living in mountainous regions.