When solving a mathematical problem, we sometimes encounter a situation where we can not reach a correct answer in spite of acquiring knowledge and formula necessary for the solution. The reason can be attributed to t...When solving a mathematical problem, we sometimes encounter a situation where we can not reach a correct answer in spite of acquiring knowledge and formula necessary for the solution. The reason can be attributed to the lack in metacognitive abilities. Metacognitive abilities consist of comparing the difficulty of problem with own ability, proper plan of solution process, and conscious monitoring and control of solution process. The role and importance of metacognitive ability in mathematical problem solving of permutations and combinations was explored. Participants were required to solve five practical problems related to permutations and combinations. For each problem, the solution process was divided into: (1) understanding (recognition) of mathematical problem; (2) plan of solution; (3) execution of solution. Participants were also required to rate the anticipation whether they could solve it or not, and to rate the confidence of their own answer. According to the total score of five problems, the participants were categorized into the group of the high test score and the group of the low test score. As a result, at the plan and the execution processes, statistically significant differences were detected between the high and the low score groups. As for the rating on the anticipation of result and the confidence of own answer, no significant differences were found between both groups. Moreover, the relationship between the score of plan process and the score of execution process was statistically correlated. In other words, the more proper the plan process was conducted, the more proper solution the participants reached. In such a way, the importance of metacognitive ability in the solving process, especially the plan ability, was suggested.展开更多
This research tends to make the experimental study on the mathematics teaching model of“situated creation and problem-based instruction”(SCPBI),namely,the teaching process of“creating situations—posing problems—s...This research tends to make the experimental study on the mathematics teaching model of“situated creation and problem-based instruction”(SCPBI),namely,the teaching process of“creating situations—posing problems—solving problems—applying mathematics”.It is aimed at changing the situation where students generally lack problem-based learning experience and problem awareness.Result shows that this teaching model plays a vital role in arousing students’interest in mathematics,improving their ability to pose problems and upgrading their mathematics learning ability as well.展开更多
文摘When solving a mathematical problem, we sometimes encounter a situation where we can not reach a correct answer in spite of acquiring knowledge and formula necessary for the solution. The reason can be attributed to the lack in metacognitive abilities. Metacognitive abilities consist of comparing the difficulty of problem with own ability, proper plan of solution process, and conscious monitoring and control of solution process. The role and importance of metacognitive ability in mathematical problem solving of permutations and combinations was explored. Participants were required to solve five practical problems related to permutations and combinations. For each problem, the solution process was divided into: (1) understanding (recognition) of mathematical problem; (2) plan of solution; (3) execution of solution. Participants were also required to rate the anticipation whether they could solve it or not, and to rate the confidence of their own answer. According to the total score of five problems, the participants were categorized into the group of the high test score and the group of the low test score. As a result, at the plan and the execution processes, statistically significant differences were detected between the high and the low score groups. As for the rating on the anticipation of result and the confidence of own answer, no significant differences were found between both groups. Moreover, the relationship between the score of plan process and the score of execution process was statistically correlated. In other words, the more proper the plan process was conducted, the more proper solution the participants reached. In such a way, the importance of metacognitive ability in the solving process, especially the plan ability, was suggested.
文摘This research tends to make the experimental study on the mathematics teaching model of“situated creation and problem-based instruction”(SCPBI),namely,the teaching process of“creating situations—posing problems—solving problems—applying mathematics”.It is aimed at changing the situation where students generally lack problem-based learning experience and problem awareness.Result shows that this teaching model plays a vital role in arousing students’interest in mathematics,improving their ability to pose problems and upgrading their mathematics learning ability as well.