In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this ...In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this model, we establish a variety of exact solutions. To study the exact solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into corresponding partial differential equation and modified exp-function method is implemented to investigate the nonlinear equation. Graphical demonstrations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, unfailing, well-organized and pragmatic for fractional PDEs and could be protracted to further physical happenings.展开更多
文摘In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this model, we establish a variety of exact solutions. To study the exact solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into corresponding partial differential equation and modified exp-function method is implemented to investigate the nonlinear equation. Graphical demonstrations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, unfailing, well-organized and pragmatic for fractional PDEs and could be protracted to further physical happenings.