Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimen...Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.展开更多
Mine geology disasters include mine water, mine solid waste, apron and slide, ground collapse sink and underground fracture, etc.. The subject was studied in many ways, and fuzzy mathematics was usually used. It may a...Mine geology disasters include mine water, mine solid waste, apron and slide, ground collapse sink and underground fracture, etc.. The subject was studied in many ways, and fuzzy mathematics was usually used. It may assure the result and distinguish the dangerous rank of different areas. But it has two defects: The first is the result is not very exact, especially the border; The second is it is short of quantity. Fuzzy mathematics and grey theory were used in order to solve the problem. Firstly, mathematical model was constructed by using grey theory, so as to evaluate and forecast the dangerous rank of mining geology disaster in different areas. Then different areas were analyzed and divided by fuzzy mathematics. By doing these, similitude rules are not only studied but also differences are discriminated. Through the practice it can be known that the result is more accurate than before.展开更多
The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological backg...The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.展开更多
By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir b...By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.展开更多
Guneshli is a unique oil field for.its huge oil reserves. Fasila layer is one of the main productive series with more than 3,300 tons of oil production per year. It is an important task to continue efficently develop ...Guneshli is a unique oil field for.its huge oil reserves. Fasila layer is one of the main productive series with more than 3,300 tons of oil production per year. It is an important task to continue efficently develop this object. Development of Fasila was analysed based on geological-mathematical models, production performance was predicted through use of advanced "evolution" modeling program. In addition, the impact of water injection from deep water Guneshly was identified and relavant proposals were put forward.展开更多
A surface spline function is used to fit a coal seam surface in structural anal ysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structur...A surface spline function is used to fit a coal seam surface in structural anal ysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structural analysis, especially for recogni tion of the concealed structures. The detection of structures related to faulting is em phasized.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stabi...It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stability and the extension probability of fractures. Numerical simulation forecasted the dam displacement and the operating behavior based on the parameters obtained from the back analysis. Geomechanical model test was based on small block masonry and the models with or without fractures were both tested. The results show that the deformation of dams is in line with general rules at a normal water load and the extension probability of the existing fractures is very small, which has no significant impact on the global stability of dams. Moreover, the failure process of arch dams with the existing fractures in dams at overload scenarios is similar to the one without the embedded fractures, i.e., the failure crack which is not caused by the existing fractures inside comes into being on the surface of dams itself.展开更多
文摘Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.
文摘Mine geology disasters include mine water, mine solid waste, apron and slide, ground collapse sink and underground fracture, etc.. The subject was studied in many ways, and fuzzy mathematics was usually used. It may assure the result and distinguish the dangerous rank of different areas. But it has two defects: The first is the result is not very exact, especially the border; The second is it is short of quantity. Fuzzy mathematics and grey theory were used in order to solve the problem. Firstly, mathematical model was constructed by using grey theory, so as to evaluate and forecast the dangerous rank of mining geology disaster in different areas. Then different areas were analyzed and divided by fuzzy mathematics. By doing these, similitude rules are not only studied but also differences are discriminated. Through the practice it can be known that the result is more accurate than before.
基金Projects(51374093,51104058)supported by the National Natural Science Foundation of ChinaProject(2013CB227903)supported by the National Basic Research Program of China
文摘The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.
文摘By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.
文摘Guneshli is a unique oil field for.its huge oil reserves. Fasila layer is one of the main productive series with more than 3,300 tons of oil production per year. It is an important task to continue efficently develop this object. Development of Fasila was analysed based on geological-mathematical models, production performance was predicted through use of advanced "evolution" modeling program. In addition, the impact of water injection from deep water Guneshly was identified and relavant proposals were put forward.
文摘A surface spline function is used to fit a coal seam surface in structural anal ysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structural analysis, especially for recogni tion of the concealed structures. The detection of structures related to faulting is em phasized.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
基金supported by the National Natural Science Foundation of China(Grant No.51479097)the State Key Laboratory of Hydroscience,and Engineering of Hydroscience(Grant No.2013-KY-2)
文摘It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stability and the extension probability of fractures. Numerical simulation forecasted the dam displacement and the operating behavior based on the parameters obtained from the back analysis. Geomechanical model test was based on small block masonry and the models with or without fractures were both tested. The results show that the deformation of dams is in line with general rules at a normal water load and the extension probability of the existing fractures is very small, which has no significant impact on the global stability of dams. Moreover, the failure process of arch dams with the existing fractures in dams at overload scenarios is similar to the one without the embedded fractures, i.e., the failure crack which is not caused by the existing fractures inside comes into being on the surface of dams itself.