期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
热力耦合问题数学均匀化方法的物理意义 被引量:1
1
作者 朱晓鹏 黄俊 +1 位作者 陈磊 邢誉峰 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第11期2139-2151,共13页
针对复合材料周期结构热力耦合问题,通过构造各阶摄动项的全解耦格式,推导了高阶数学均匀化方法(MHM)的数学表达式,并使用加权残量方法将其转换为易于编程实现的矩阵列式。将弹性影响函数和热影响函数分别比拟为弹性虚拟位移和热虚拟位... 针对复合材料周期结构热力耦合问题,通过构造各阶摄动项的全解耦格式,推导了高阶数学均匀化方法(MHM)的数学表达式,并使用加权残量方法将其转换为易于编程实现的矩阵列式。将弹性影响函数和热影响函数分别比拟为弹性虚拟位移和热虚拟位移,通过弹性虚拟载荷和热虚拟载荷的自平衡特性、量纲分析及几何直观等角度揭示了各阶影响函数和摄动位移的物理意义,并指出二阶摄动位移对于细观结构分析的必要性。数值计算结果验证了高阶MHM矩阵列式及物理意义分析的正确性。 展开更多
关键词 周期复合材料结构 数学均匀化方法(MHM) 热力耦合 摄动位移 物理意义
下载PDF
热力耦合问题数学均匀化方法的计算精度 被引量:4
2
作者 李鸿鹏 凌松 +2 位作者 戚振彪 姜克儒 陈磊 《应用数学和力学》 CSCD 北大核心 2020年第1期54-69,共16页
针对复合材料周期结构热力耦合问题,推导了数学均匀化方法(MHM)各阶摄动位移的全解耦格式和各阶影响函数控制方程,并使用加权残量方法将其转化为易于编程计算的有限元列式.在解耦格式中,各阶摄动位移是相应阶次的影响函数和宏观场导数... 针对复合材料周期结构热力耦合问题,推导了数学均匀化方法(MHM)各阶摄动位移的全解耦格式和各阶影响函数控制方程,并使用加权残量方法将其转化为易于编程计算的有限元列式.在解耦格式中,各阶摄动位移是相应阶次的影响函数和宏观场导数的乘积,即影响函数和宏观场导数的计算精度共同决定摄动项的精度,其中影响函数的计算精度取决于单胞边界条件选取的适用性.针对2D复合材料周期结构静力学问题,使用超单胞边界条件和微分求积有限单元法,分别提高了影响函数和宏观场导数的求解精度.在此基础上,研究了高阶展开项对MHM真实位移精度的影响,确定了二阶摄动项的必要性.最后应用最小势能原理评估了各阶摄动MHM的计算精度,数值比较结果验证了结论的正确性. 展开更多
关键词 数学均匀化方法 周期复合材料 热力耦合 高阶摄动
下载PDF
若干周期性复合材料结构数学均匀化方法的计算精度 被引量:7
3
作者 邢誉峰 陈磊 《航空学报》 EI CAS CSCD 北大核心 2015年第5期1520-1529,共10页
数学均匀化方法(MHM)一般需要通过有限元方法(FEM)来实现,摄动阶次和单元阶次直接影响计算结果。在解耦格式中,各阶摄动位移是相应阶次的影响函数和均匀化位移导数的乘积。单元阶次的选取取决于影响函数和均匀化位移的精度要求,而摄动... 数学均匀化方法(MHM)一般需要通过有限元方法(FEM)来实现,摄动阶次和单元阶次直接影响计算结果。在解耦格式中,各阶摄动位移是相应阶次的影响函数和均匀化位移导数的乘积。单元阶次的选取取决于影响函数和均匀化位移的精度要求,而摄动阶次的选取则主要依赖于虚拟载荷的性质和均匀化位移各阶导数的计算精度;针对周期性复合材料杆的静力学问题,在施加不同阶次的载荷时,通过选择合适阶次的单元和摄动阶次得到了精确解。使用类似的方法研究了2D周期性复合材料静力学问题,指出了四边固支作为周期性单胞边界条件以及宏观位移求导精度对计算结果将有很大的影响。强调了二阶摄动对数学均匀化方法计算精度的作用;在数值结果中,应用最小势能原理评估了各阶摄动数学均匀化方法的计算精度,数值比较结果验证了结论的正确性。 展开更多
关键词 周期性复合材料结构 数学均匀化方法 摄动阶次 单元阶次 势能泛函
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部