In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the...In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the otter board had a good hydrodynamic performance with the maximum lift-to-drag ratio(K_(MAX) = 3.70).The flow separation occurred when the angle of attack(AOA) was at 45?,which revealed that the double deflector structure of the otter board can delay the flow separation.Numerical simulation results showed a good agreement with experiment ones,and could predict the critical AOA,which showed that it can be used to study the hydrodynamic performance of the otter board with the advantage of flow visualization.However,the drag coefficient in flume tank was much higher than that in wind tunnel,which resulted in a lower lift-to-drag ratio.These may be due to different fluid media between flume tank and wind tunnel,which result in the big difference of the vortexes around the otter board.Given the otter boards are operated in water,it was suggested to apply both flume tank experiment and numerical simulation to study the hydrodynamic performance of otter board.展开更多
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification...Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values.展开更多
In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to hi...In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to high volume data feeds that are common in large Tier-1 ISP networks and providing rich, timely information on observed attacks. It is a software solution that is designed to run on off-the-shelf hardware platforms and incorporates a scalable data processing architecture along with lightweight analysis algorithms that make it suitable for deployment in large networks. RTFF also makes use of state of the art machine learning algorithms to construct attack models that can be used to detect as well as predict attacks.展开更多
In this paper, a simplified model of the bistable piezoelectric cantilever beam with magnets is established, and the potential energy of the bistable system is analyzed. We have proposed the bistable L-shaped beam str...In this paper, a simplified model of the bistable piezoelectric cantilever beam with magnets is established, and the potential energy of the bistable system is analyzed. We have proposed the bistable L-shaped beam structure, which has the same geometry dimensions of the bistable straight beam in the first time. The comparative study on power generations and dynamic responses of the bistable straight beam and the bistable L-shaped beam plays an important role in exploring excellent piezoelectric generator.The experiment structure includes the base layer and the piezoelectric layer. The harmonic excitation is given to the system.Theoretical analysis results show that the potential energy function of the system has two obvious steady potential wells. In addition, the depth of the upper potential well is different from that of the lower potential well when the gravity potential energy is considered. Experimental results demonstrate that the power generation for the straight beam is better than that of the horizontally placed L-shaped beam when the excitation amplitude is 450 m V. There is the existence that the energy harvesting capacity of the bistable L-shaped beam is better than that of the bistable straight beam when the excitation amplitude is 400 m V.Furthermore, the power generation of the bistable L-shaped beam with the upper potential well is obviously better than that of the bistable L-shaped beam with the lower potential well. In addition, comparing with the straight beam, the dynamic response of the bistable L-shaped beam is more complex when the external excitation frequency is changed. It is also observed that the distance between the magnets has the obvious influence on the dynamic response of the bistable system. It is very effective to select the appropriate distance between the magnets to improve the power generation of the bistable energy harvester under the fixed excitation conditions.展开更多
基金supported by the National Key Technology R&D Program(No.2013BAD13B03)the Key R&D Project from Science and Technology Department of Zhejiang Province(Nos.2018C02026,2018C02040)+1 种基金the National Natural Science Foundation of China(No.31072246)the Fundamental Research Funds for the Central Universities(No.201564020)
文摘In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the otter board had a good hydrodynamic performance with the maximum lift-to-drag ratio(K_(MAX) = 3.70).The flow separation occurred when the angle of attack(AOA) was at 45?,which revealed that the double deflector structure of the otter board can delay the flow separation.Numerical simulation results showed a good agreement with experiment ones,and could predict the critical AOA,which showed that it can be used to study the hydrodynamic performance of the otter board with the advantage of flow visualization.However,the drag coefficient in flume tank was much higher than that in wind tunnel,which resulted in a lower lift-to-drag ratio.These may be due to different fluid media between flume tank and wind tunnel,which result in the big difference of the vortexes around the otter board.Given the otter boards are operated in water,it was suggested to apply both flume tank experiment and numerical simulation to study the hydrodynamic performance of otter board.
文摘Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values.
文摘In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to high volume data feeds that are common in large Tier-1 ISP networks and providing rich, timely information on observed attacks. It is a software solution that is designed to run on off-the-shelf hardware platforms and incorporates a scalable data processing architecture along with lightweight analysis algorithms that make it suitable for deployment in large networks. RTFF also makes use of state of the art machine learning algorithms to construct attack models that can be used to detect as well as predict attacks.
基金supported by the National Natural Science Foundation of China(Grant Nos.11772008,11172009,11372015,11232009,10872010,11290152&10732020)
文摘In this paper, a simplified model of the bistable piezoelectric cantilever beam with magnets is established, and the potential energy of the bistable system is analyzed. We have proposed the bistable L-shaped beam structure, which has the same geometry dimensions of the bistable straight beam in the first time. The comparative study on power generations and dynamic responses of the bistable straight beam and the bistable L-shaped beam plays an important role in exploring excellent piezoelectric generator.The experiment structure includes the base layer and the piezoelectric layer. The harmonic excitation is given to the system.Theoretical analysis results show that the potential energy function of the system has two obvious steady potential wells. In addition, the depth of the upper potential well is different from that of the lower potential well when the gravity potential energy is considered. Experimental results demonstrate that the power generation for the straight beam is better than that of the horizontally placed L-shaped beam when the excitation amplitude is 450 m V. There is the existence that the energy harvesting capacity of the bistable L-shaped beam is better than that of the bistable straight beam when the excitation amplitude is 400 m V.Furthermore, the power generation of the bistable L-shaped beam with the upper potential well is obviously better than that of the bistable L-shaped beam with the lower potential well. In addition, comparing with the straight beam, the dynamic response of the bistable L-shaped beam is more complex when the external excitation frequency is changed. It is also observed that the distance between the magnets has the obvious influence on the dynamic response of the bistable system. It is very effective to select the appropriate distance between the magnets to improve the power generation of the bistable energy harvester under the fixed excitation conditions.