In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
In this paper, to construct exact solution of nonlinear partial differential equation, an easy-to-use approach is proposed. By means of the transformation of the independent variables and the travelling wave transform...In this paper, to construct exact solution of nonlinear partial differential equation, an easy-to-use approach is proposed. By means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. To solve the ordinary differential equation, we assume the soliton solution in the explicit expression and obtain the travelling wave solution. By the transformation back to the original independent variables, the soliton solution of the original partial differential equation is derived. We investigate the short wave model for the Camassa-Holm equation and the Degasperis-Procesi equation respectively. One-cusp soliton solution of the Camassa-Flolm equation is obtained. One-loop soliton solution of the Degasperis- Procesi equation is also obtained, the approximation of which in a closed form can be obtained firstly by the Adomian decomposition method. The obtained results in a parametric form coincide perfectly with those given in the present reference. This illustrates the efficiency and reliability of our approach.展开更多
As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both b...As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.展开更多
At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings,...At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings, cores, tank walls, and radiators. This paper outlines its physical models and numerical solution methods. Furthermore, for oil-immersed transformers, it presents an application to a HV (high voltage) winding in a traction transformer of locomotives, cooled by synthetic ester.展开更多
A new expanded approach is presented to find exact solutions of nonlinear differential-difference equations. As its application, the soliton solutions and periodic solutions of a lattice equation are obtained.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金the State Key Basic Research Program of China under Grant No.2004CB318000the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060269006
文摘In this paper, to construct exact solution of nonlinear partial differential equation, an easy-to-use approach is proposed. By means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. To solve the ordinary differential equation, we assume the soliton solution in the explicit expression and obtain the travelling wave solution. By the transformation back to the original independent variables, the soliton solution of the original partial differential equation is derived. We investigate the short wave model for the Camassa-Holm equation and the Degasperis-Procesi equation respectively. One-cusp soliton solution of the Camassa-Flolm equation is obtained. One-loop soliton solution of the Degasperis- Procesi equation is also obtained, the approximation of which in a closed form can be obtained firstly by the Adomian decomposition method. The obtained results in a parametric form coincide perfectly with those given in the present reference. This illustrates the efficiency and reliability of our approach.
基金Foundation item: Supported by the National Natural Science Foundation of China(50608036)
文摘As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.
文摘At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings, cores, tank walls, and radiators. This paper outlines its physical models and numerical solution methods. Furthermore, for oil-immersed transformers, it presents an application to a HV (high voltage) winding in a traction transformer of locomotives, cooled by synthetic ester.
基金the National Natural Science Foundation of China (No. 60773119)
文摘A new expanded approach is presented to find exact solutions of nonlinear differential-difference equations. As its application, the soliton solutions and periodic solutions of a lattice equation are obtained.