Heavy metal removal from water is a great concern for environmentalists and engineers. Ion-imprinted membranes are among the state of the art technologies for selective adsorption of heavy metals from aqueous environm...Heavy metal removal from water is a great concern for environmentalists and engineers. Ion-imprinted membranes are among the state of the art technologies for selective adsorption of heavy metals from aqueous environment. Dialysis permeation of nickel ions through Ni(II)-imprinted membranes has been thermodynamically studied in our prior work. In current study, the diffusive transport model was developed and then applied for better insight into the retardation mechanisms involved in the ion-imprinted membrane transport. The Sips isotherm model was coupled with the transport model to obtain the governing equation. Chemisorption and physical interactions(bulk diffusion and pore-clogging) were the most probable retardation mechanisms according to the modeling results. Relative retardation factor(η) was also defined as; transport-rate controlled by chemical adsorption to that controlled by physical interactions. With the help of the retardation factor, it was understood that the membrane behavior gradually changes from chemisorption to facilitated transport during permeation time. Effect of important operating parameters such as time, temperature and concentration on transport behavior was also investigated. Results indicated that chemisorption rate is rather higher at lower concentrations, early permeation times and reduced temperatures. In addition, η tabulated greater values for Ni(II) compared to Co(II) due to the imprinting effect.展开更多
It is shown that a radical square zero algebra is wild, if and only if it is of Corner's type, and it is strictly wild if and only if it is Endo-wild. This gives a negative answer to a problem posed by Simson.
In this paper, we investigate the Lie algebra L(A,α,δ) of type L and obtain the respective sufficient conditions for L(A,α,δ δ to be semisimple, and for Z(ω) = Fω as well, where 0 ≠ ω ? L(A, α, δ, δ) and Z...In this paper, we investigate the Lie algebra L(A,α,δ) of type L and obtain the respective sufficient conditions for L(A,α,δ δ to be semisimple, and for Z(ω) = Fω as well, where 0 ≠ ω ? L(A, α, δ, δ) and Z(ω) is the centralizer of ω.展开更多
Network and equation-based (EB) models are two prominent methods used in the study of epidemics. While EB models use a global approach to model aggregate population, net- work models focus on the behavior of individ...Network and equation-based (EB) models are two prominent methods used in the study of epidemics. While EB models use a global approach to model aggregate population, net- work models focus on the behavior of individuals in the population. The two approaches have been used in several areas of research, including finance, computer science, social science and epidemiology. In this study, epidemiology is used to contrast EB models with network models. The methods are based on the assumptions and properties of compartmental models. In EB models we solve a system of ordinary differential equations and in network models we simulate the spread of epidemics on contact networks using bond percolation. We examine the impact of network structures on the spread of infection by considering various networks, including Poisson, Erd3s R6nyi, Scale-free, and Watts- Strogatz small-world networks, and discuss how control measures can make use of the network structures. In addition, we simulate EB assumptions on Watts-Strogatz net- works to determine when the results are similar to that of EB models. As a case study, we use data from the 1918 Spanish flu pandemic and that from measles outbreak to validate our results.展开更多
基金Arak University for supporting during this study
文摘Heavy metal removal from water is a great concern for environmentalists and engineers. Ion-imprinted membranes are among the state of the art technologies for selective adsorption of heavy metals from aqueous environment. Dialysis permeation of nickel ions through Ni(II)-imprinted membranes has been thermodynamically studied in our prior work. In current study, the diffusive transport model was developed and then applied for better insight into the retardation mechanisms involved in the ion-imprinted membrane transport. The Sips isotherm model was coupled with the transport model to obtain the governing equation. Chemisorption and physical interactions(bulk diffusion and pore-clogging) were the most probable retardation mechanisms according to the modeling results. Relative retardation factor(η) was also defined as; transport-rate controlled by chemical adsorption to that controlled by physical interactions. With the help of the retardation factor, it was understood that the membrane behavior gradually changes from chemisorption to facilitated transport during permeation time. Effect of important operating parameters such as time, temperature and concentration on transport behavior was also investigated. Results indicated that chemisorption rate is rather higher at lower concentrations, early permeation times and reduced temperatures. In addition, η tabulated greater values for Ni(II) compared to Co(II) due to the imprinting effect.
基金I thank C.M. Ringel for some discussions and D. Simson for introducing the problem, I also thank SFB343 Bielefeld for support.
文摘It is shown that a radical square zero algebra is wild, if and only if it is of Corner's type, and it is strictly wild if and only if it is Endo-wild. This gives a negative answer to a problem posed by Simson.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10271081)a Fund from Educational Department of Beijing(Grant No.2002KJ-100).
文摘In this paper, we investigate the Lie algebra L(A,α,δ) of type L and obtain the respective sufficient conditions for L(A,α,δ δ to be semisimple, and for Z(ω) = Fω as well, where 0 ≠ ω ? L(A, α, δ, δ) and Z(ω) is the centralizer of ω.
文摘Network and equation-based (EB) models are two prominent methods used in the study of epidemics. While EB models use a global approach to model aggregate population, net- work models focus on the behavior of individuals in the population. The two approaches have been used in several areas of research, including finance, computer science, social science and epidemiology. In this study, epidemiology is used to contrast EB models with network models. The methods are based on the assumptions and properties of compartmental models. In EB models we solve a system of ordinary differential equations and in network models we simulate the spread of epidemics on contact networks using bond percolation. We examine the impact of network structures on the spread of infection by considering various networks, including Poisson, Erd3s R6nyi, Scale-free, and Watts- Strogatz small-world networks, and discuss how control measures can make use of the network structures. In addition, we simulate EB assumptions on Watts-Strogatz net- works to determine when the results are similar to that of EB models. As a case study, we use data from the 1918 Spanish flu pandemic and that from measles outbreak to validate our results.