The Schrodinger equation for a particle in the V-shaped potential decorated by a repulsive or attractive Dirac delta function interaction at the center is solved, demonstrating the crucial influence of point interacti...The Schrodinger equation for a particle in the V-shaped potential decorated by a repulsive or attractive Dirac delta function interaction at the center is solved, demonstrating the crucial influence of point interaction on the even-parity states of the original system without decoration. As strength of the attraction increases, the ground state energy falls down without limit; and in limit of infinitely large attraction, the ground state approaches a singular state. Our analysis and conclusion can be readily generalized to any one-dimensional system a particle interacts with symmetrical potential plus the Dirac delta function interaction at the center.展开更多
The Schrodinger equation with hyperbolic potential V ( x )=- Vosinh 2q ( x / d) / cosh 6 ( x / d) (q= 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain genera/symmetric and ...The Schrodinger equation with hyperbolic potential V ( x )=- Vosinh 2q ( x / d) / cosh 6 ( x / d) (q= 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain genera/symmetric and antisymmetric polynomial solutions of the SchrSdinger equation in a unified form via the Functional Bethe ansatz method. Furthermore, we discuss the characteristic of wavefunction of bound state with varying potential strengths. Particularly, the number of wavefunction's nodes decreases with the increase of potentiaJ strengths, and the particle tends to the bottom of the potential well correspondingly.展开更多
基金Supported by the Natural Science Foundation of China under Grant Nos. 50831003, 50571037, and 10774041
文摘The Schrodinger equation for a particle in the V-shaped potential decorated by a repulsive or attractive Dirac delta function interaction at the center is solved, demonstrating the crucial influence of point interaction on the even-parity states of the original system without decoration. As strength of the attraction increases, the ground state energy falls down without limit; and in limit of infinitely large attraction, the ground state approaches a singular state. Our analysis and conclusion can be readily generalized to any one-dimensional system a particle interacts with symmetrical potential plus the Dirac delta function interaction at the center.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11047025,11075126 and 11031005the Ministry of Education Doctoral Program Funds under Grant Nos.20126101110004,20116101110017SRF for ROCS
文摘The Schrodinger equation with hyperbolic potential V ( x )=- Vosinh 2q ( x / d) / cosh 6 ( x / d) (q= 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain genera/symmetric and antisymmetric polynomial solutions of the SchrSdinger equation in a unified form via the Functional Bethe ansatz method. Furthermore, we discuss the characteristic of wavefunction of bound state with varying potential strengths. Particularly, the number of wavefunction's nodes decreases with the increase of potentiaJ strengths, and the particle tends to the bottom of the potential well correspondingly.