期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
企业动态联盟环境下的产品数据分布存储技术研究 被引量:2
1
作者 魏志强 王先逵 +1 位作者 吴丹 杨志刚 《航空制造技术》 北大核心 2003年第8期35-37,共3页
在分析了产品数据分布式存储特点的基础上 ,设计了面向多联盟环境下的产品存储模型 ,定义了产品存储模型中的信息关联关系和资源关联关系 ,建立了联盟企业和产品数据的关系矩阵。以航空某企业联盟为应用背景 。
关键词 企业动态联盟 产品数据分布存储 数据存储模型 航空企业
下载PDF
云计算环境下三维海量激光扫描数据的分布存储技术研究 被引量:3
2
作者 杨学林 《激光杂志》 北大核心 2017年第7期171-175,共5页
大多数三维海量激光扫描数据存储方法仅局限于对海量数据的分类存储,未能有效整合数据特点,导致存储区域数据分布杂乱无章,实用性不强。基于上述原因,提出云计算环境下三维海量激光扫描数据的分布存储方法。根据三维海量激光扫描数据特... 大多数三维海量激光扫描数据存储方法仅局限于对海量数据的分类存储,未能有效整合数据特点,导致存储区域数据分布杂乱无章,实用性不强。基于上述原因,提出云计算环境下三维海量激光扫描数据的分布存储方法。根据三维海量激光扫描数据特点,构建三维海量激光扫描数据分布模型,并使用云计算处理模型数据。利用点云数据配准,结合ICP(iterative closest point)算法,将处理后的三维海量激光扫描数据输入到三维分布存储模型中,实现三维海量激光扫描数据的精准排列和存储。实验结果表明,所提方法的存储效率和提取效率均很高,实用性较强,并拥有非常优异的数据融合性能。 展开更多
关键词 云计算 三维 激光扫描 数据分布存储 研究
下载PDF
一种基于网络磁盘阵列的高性能海量存储系统 被引量:6
3
作者 李洁琼 冯丹 《小型微型计算机系统》 CSCD 北大核心 2006年第12期2326-2330,共5页
网络磁盘阵列将传统的以服务器为中心的存储转发改变为以数据为中心的直接传输,从而消除了传统模式下的服务器I/O瓶颈.本文基于网络磁盘阵列构建出一种高性能的海量存储系统,其文件集中管理和数据分布存储的体系结构不仅加快了数据传输... 网络磁盘阵列将传统的以服务器为中心的存储转发改变为以数据为中心的直接传输,从而消除了传统模式下的服务器I/O瓶颈.本文基于网络磁盘阵列构建出一种高性能的海量存储系统,其文件集中管理和数据分布存储的体系结构不仅加快了数据传输速度、降低了存储管理开销,同时也实现了命令与数据分流、扩容与增速同步的目标,从而大大提高的整个存储系统的性能. 展开更多
关键词 网络磁盘阵列 海量存储 文件集中管理 数据分布存储
下载PDF
基于广电网络的大数据实践 被引量:1
4
作者 周忠瑞 吴天飞 +2 位作者 周海荣 沈彩飞 张镠亮 《广播与电视技术》 2018年第5期106-109,共4页
大数据平台技术及应用逐渐发展成熟,如何选择大数据平台建设技术,实现对大数据的高效、稳定、快捷的分析和挖掘,已经成为大数据建设方关注的焦点。本文将基于诸暨广电网络有限公司,建设大数据平台对技术选择、实现和数据分布存储,进行... 大数据平台技术及应用逐渐发展成熟,如何选择大数据平台建设技术,实现对大数据的高效、稳定、快捷的分析和挖掘,已经成为大数据建设方关注的焦点。本文将基于诸暨广电网络有限公司,建设大数据平台对技术选择、实现和数据分布存储,进行简单的介绍。 展开更多
关键词 数据 数据实现 数据分布存储
下载PDF
Big Data; Definition and Challenges
5
作者 Shirin Abbasi 《Journal of Energy and Power Engineering》 2016年第7期405-410,共6页
In recent years, due to the widespread use of electronic services and the use of social network as well, large volumes of information are being made that this information contains various types of things such as video... In recent years, due to the widespread use of electronic services and the use of social network as well, large volumes of information are being made that this information contains various types of things such as videos, photos, texts etc. besides large volume. Due to the high volume and the lack of specificity of this information, covering them through traditional and relational databases is not possible and modem solutions should be used for processing them, so that processing speed is also covered. Data storage for processing and the way of accessing to them in memory, network communication, covering required features for distributed system in solutions that are in use for storing big data, are the items that should be covered. In this paper, a collection of advantages and challenges of big data, special features and characteristics of them has been provided and with the introduction of technologies in use, storage methods are studied and research opportunities to continue the way will be introduced. 展开更多
关键词 Big data cloud computing HADOOP the analysis of big data.
下载PDF
A New Approach for Knowledge Discovery in Distributed Databases Using Fragmented Data Storage Model
6
作者 Masoud Pesaran Behbahani Islam Choudhury Souheil Khaddaj 《Chinese Business Review》 2013年第12期834-845,共12页
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera... Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided. 展开更多
关键词 data mining decision-support system distributed databases knowledge discovery in database (KDD)
下载PDF
Big data storage technologies: a survey 被引量:17
7
作者 Aisha SIDDIQA Ahmad KARIM Abdullah GANI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第8期1040-1070,共31页
There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed 'big data'. The structural shift of the storage m... There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing volume, velocity, and diversity of data, termed 'big data'. The structural shift of the storage mechanism from traditional data management systems to NoSQL technology is due to the intention of fulfilling big data storage requirements. However, the available big data storage technologies are inefficient to provide consistent, scalable, and available solutions for continuously growing heterogeneous data. Storage is the preliminary process of big data analytics for real-world applications such as scientific experiments, healthcare, social networks, and e-business. So far, Amazon, Google, and Apache are some of the industry standards in providing big data storage solutions, yet the literature does not report an in-depth survey of storage technologies available for big data, investigating the performance and magnitude gains of these technologies. The primary objective of this paper is to conduct a comprehensive investigation of state-of-the-art storage technologies available for big data. A well-defined taxonomy of big data storage technologies is presented to assist data analysts and researchers in understanding and selecting a storage mecha- nism that better fits their needs. To evaluate the performance of different storage architectures, we compare and analyze the ex- isling approaches using Brewer's CAP theorem. The significance and applications of storage technologies and support to other categories are discussed. Several future research challenges are highlighted with the intention to expedite the deployment of a reliable and scalable storage system. 展开更多
关键词 Big data Big data storage NoSQL databases Distributed databases CAP theorem SCALABILITY Consistency-partition resilience Availability-partition resilience
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部