Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propos...Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-off angle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.展开更多
This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introdu...This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introduction of ARSGs. We proposed an exploratory model based on the technology acceptance model by Davis. Exogenous factors in the model were defined by performing semi-structured in-depth interviews, along with the use of an expert panel in addition to the technology adoption literature. The framework was tested by means of a field study, data was collected via an Internet survey, and path analysis was used. The results indicate that there were a number of factors to be considered in order to understand ARSG adoption by physicians.Usefulness was influenced by ease of use, compatibility,ease of reminding, and speech recognition, while ease of use was affected by ease of learning, ease of medical education, external influence, and privacy. Privacy was the only negative factor that reduced the perceived ease of use,and was found to indirectly create a negative attitude.Compatibility emerged as the most significant external factor for usefulness. Developers of ARSGs should pay attention to healthcare-specific requirements for improved utilization and more extensive adoption of ARSGs in healthcare settings. In particular, they should focus on how to increase the compatibility of ARSGs. Further research needs to be conducted to explain the adoption intention of physicians.展开更多
基金supported by the National Science and Technology Major Project(No.2016ZX05014-001-008)the National Key Basic Research Program of China(No.2014CB239006)+2 种基金the National Natural Science Foundation of China(Nos.41104069 and 41274124)the Open foundation of SINOPEC Key Laboratory of Geophysics(No.33550006-15-FW2099-0033)the Fundamental Research Funds for Central Universities(No.16CX06046A)
文摘Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-off angle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.
文摘This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introduction of ARSGs. We proposed an exploratory model based on the technology acceptance model by Davis. Exogenous factors in the model were defined by performing semi-structured in-depth interviews, along with the use of an expert panel in addition to the technology adoption literature. The framework was tested by means of a field study, data was collected via an Internet survey, and path analysis was used. The results indicate that there were a number of factors to be considered in order to understand ARSG adoption by physicians.Usefulness was influenced by ease of use, compatibility,ease of reminding, and speech recognition, while ease of use was affected by ease of learning, ease of medical education, external influence, and privacy. Privacy was the only negative factor that reduced the perceived ease of use,and was found to indirectly create a negative attitude.Compatibility emerged as the most significant external factor for usefulness. Developers of ARSGs should pay attention to healthcare-specific requirements for improved utilization and more extensive adoption of ARSGs in healthcare settings. In particular, they should focus on how to increase the compatibility of ARSGs. Further research needs to be conducted to explain the adoption intention of physicians.