期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
探索数据挖掘分类技术在高校教学中的应用
1
作者 姚争儿 《现代计算机》 2010年第10期44-46,54,共4页
数据挖掘是致力于数据分析和理解、揭示数据内部蕴藏知识的技术。由于数据库中存在着大量数据,因此从数据库中发现有用的信息显得十分重要。对数据挖掘技术的研究,国内外己经取得了许多令人瞩日的成就,并成功地应用到了许多领域,但在教... 数据挖掘是致力于数据分析和理解、揭示数据内部蕴藏知识的技术。由于数据库中存在着大量数据,因此从数据库中发现有用的信息显得十分重要。对数据挖掘技术的研究,国内外己经取得了许多令人瞩日的成就,并成功地应用到了许多领域,但在教育领域中的应用并不广泛。探索在高校教学中数据挖掘分类技术的应用,提出数据挖掘技术在高校教学应用中的实施方案,并以高校教学中学生成绩的分析为例介绍方案的实施过程。 展开更多
关键词 数据挖掘分类技术 ID3算法 决策树
下载PDF
决策树分类技术研究 被引量:7
2
作者 陈文 史金成 《福建电脑》 2005年第8期5-6,共2页
决策树分类是一种重要的数据分类技术。该文通过对决策树分类方法的研究,进一步讨论了实际使用过程中决策树学习出现的常见问题的解决方法。为实际应用提供了依据。
关键词 数据分类技术 决策树学习 分类方法
下载PDF
数据挖掘的发展及其特点 被引量:16
3
作者 朱建平 张润楚 《统计与决策》 北大核心 2002年第7期71-72,共2页
关键词 关联规则 聚类规则 数据分类技术 统计学 数据挖掘 发展 特点
下载PDF
一种新的支持向量机分类器的设计方法
4
作者 李凯 崔丽娟 黄厚宽 《河北大学学报(自然科学版)》 CAS 2002年第4期316-321,共6页
提出了一种新的支持向量机分类器的设计方法 .该方法利用主成分分析 (PCA)及聚类技术在原问题空间中求解 ,减少了支持向量机分类器中支持向量的维数 ,且将原问题空间与特征空间中的问题归结为同一类的设计问题 .
关键词 设计方法 主成分分析 聚类技术 支持向量机分类 特征空间 数据分类技术
下载PDF
基于Linux平台的应用层交换系统的设计与实现
5
作者 冷飞 《中国现代教育装备》 2008年第3期93-95,共3页
本文描述了应用层交换系统的实现过程,介绍了交换技术的发展,并比较了该领域的相关研究;对设计原理和技术基础进行了详尽的说明。
关键词 应用层交换 网络地址转换 数据分类技术
下载PDF
Scalable classification by clustering: Hybrid can be better than Pure
6
作者 邓胜春 He +2 位作者 Zengyou Xu Xiaofei 《High Technology Letters》 EI CAS 2007年第2期131-135,共5页
The problem of scalable classification by clustering in large databases was discussed. Clustering based classification method first generates clusters using clustering algorithms. To classify new coming da-ta points, ... The problem of scalable classification by clustering in large databases was discussed. Clustering based classification method first generates clusters using clustering algorithms. To classify new coming da-ta points, it finds the κ nearest clusters of the data point as neighbors, and assign each data point to the dominant class of these neighbors. Existing algorithms incorporated class information in making clustering decisions and produced pure clusters (each cluster associated with only one class). We presented hybrid cluster based algorithms, which produce clusters by unsupervised clustering and allow each cluster associ- ated with multiple classes. Experimental results show that hybrid cluster based algorithms outperform pure ones in both classification accuracy and training soeed. 展开更多
关键词 CLASSIFICATION CLUSTERING data mining
下载PDF
AdaBoost for Improved Voice-Band Signal Classification
7
作者 李建彬 王勇 +1 位作者 郑辉 牛忠霞 《Journal of Donghua University(English Edition)》 EI CAS 2007年第2期255-259,共5页
A good voice-band signal classification can not only enable the safe application of speech ceding techniques, the implementation of a Digital Signal Interpolation (DSI) system, but also facilitate network administra... A good voice-band signal classification can not only enable the safe application of speech ceding techniques, the implementation of a Digital Signal Interpolation (DSI) system, but also facilitate network administration and planning by providing accurate voice-band traffic analysis. A new method is proposed to detect and classify the presence of various voice-band signals on the General Switched Telephone Network (GSTN). The method uses a combination of simple base classifiers through the AdaBoost algorithm. The conventional classification features for voice- band data classification are combined and optimized by the AdaBoost algorithm and spectral subtraction method. Experiments show the simpleness, effectiveness, efficiency and flexibility of the method. 展开更多
关键词 voice-band ADABOOST spectral subtraction
下载PDF
Research on the Multimedia Data Mining and Classification Algorithm based on the Database Optimization Techniques
8
作者 Hu Xiu 《International Journal of Technology Management》 2015年第11期58-60,共3页
In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up co... In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up constantly makes parallel computer system structure is valued by more and more common but the corresponding software system development lags far behind the development of the hardware system, it is more obvious in the field of database technology application. Multimedia mining is different from the low level of computer multimedia processing technology and the former focuses on the extracted from huge multimedia collection mode which focused on specific features of understanding or extraction from a single multimedia objects. Our research provides new paradigm for the methodology which will be meaningful and necessary. 展开更多
关键词 Data Mining Classification Algorithm Database Optimization Multimedia Source.
下载PDF
Clustering Categorical Data:A Cluster Ensemble Approach
9
作者 何增友 Xu +2 位作者 Xiaofei Deng Shengchun 《High Technology Letters》 EI CAS 2003年第4期8-12,共5页
Clustering categorical data, an integral part of data mining,has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from th... Clustering categorical data, an integral part of data mining,has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from the viewpoint of cluster ensemble, and apply cluster ensemble approach for clustering categorical data. Experimental results on real datasets show that better clustering accuracy can be obtained by comparing with existing categorical data clustering algorithms. 展开更多
关键词 CLUSTERING categorical data cluster ensemble data mining
下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
10
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部