Most existing applications of centroidal Voronoi tessellations(CVTs) lack consideration of the length of the cluster boundaries.In this paper we propose a new model and algorithms to produce segmentations which would ...Most existing applications of centroidal Voronoi tessellations(CVTs) lack consideration of the length of the cluster boundaries.In this paper we propose a new model and algorithms to produce segmentations which would minimize the total energy—a sum of the classic CVT energy and the weighted length of cluster boundaries.To distinguish it with the classic CVTs,we call it an Edge-Weighted CVT(EWCVT).The concept of EWCVT is expected to build a mathematical base for all CVT related data classifications with requirement of smoothness of the cluster boundaries.The EWCVT method is easy in implementation,fast in computation,and natural for any number of clusters.展开更多
In the past two decades,many statistical depth functions seemed as powerful exploratoryand inferential tools for multivariate data analysis have been presented.In this paper,a new depthfunction family that meets four ...In the past two decades,many statistical depth functions seemed as powerful exploratoryand inferential tools for multivariate data analysis have been presented.In this paper,a new depthfunction family that meets four properties mentioned in Zuo and Serfling(2000)is proposed.Then aclassification rule based on the depth function family is proposed.The classification parameter b couldbe modified according to the type-Ⅰ error α,and the estimator of b has the consistency and achievesthe convergence rate n^(-1/2).With the help of the proper selection for depth family parameter c,theapproach for discriminant analysis could minimize the type-Ⅱ error β.A simulation study and a realdata example compare the performance of the different discriminant methods.展开更多
基金supported in part by the U.S.National Science Foundation under grant number DMS-0913491.
文摘Most existing applications of centroidal Voronoi tessellations(CVTs) lack consideration of the length of the cluster boundaries.In this paper we propose a new model and algorithms to produce segmentations which would minimize the total energy—a sum of the classic CVT energy and the weighted length of cluster boundaries.To distinguish it with the classic CVTs,we call it an Edge-Weighted CVT(EWCVT).The concept of EWCVT is expected to build a mathematical base for all CVT related data classifications with requirement of smoothness of the cluster boundaries.The EWCVT method is easy in implementation,fast in computation,and natural for any number of clusters.
基金supported by the Natural Science Foundation of China under Grant Nos.10901020,10726013 and 10771017
文摘In the past two decades,many statistical depth functions seemed as powerful exploratoryand inferential tools for multivariate data analysis have been presented.In this paper,a new depthfunction family that meets four properties mentioned in Zuo and Serfling(2000)is proposed.Then aclassification rule based on the depth function family is proposed.The classification parameter b couldbe modified according to the type-Ⅰ error α,and the estimator of b has the consistency and achievesthe convergence rate n^(-1/2).With the help of the proper selection for depth family parameter c,theapproach for discriminant analysis could minimize the type-Ⅱ error β.A simulation study and a realdata example compare the performance of the different discriminant methods.