期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
美打破“太字节障碍”创数据分类速度纪录
1
《高科技与产业化》 2010年第9期18-18,共1页
美国加州大学计算机科学家打破了“太字节(Terabyte)障碍”,创造了在60秒内对超过太字节数据进行分类的世界纪录。在被誉为“数据分类的世界杯”的“分类基准”比赛中,他们还追平了最快数据分类率的世界纪录,172分钟内数据分类量达... 美国加州大学计算机科学家打破了“太字节(Terabyte)障碍”,创造了在60秒内对超过太字节数据进行分类的世界纪录。在被誉为“数据分类的世界杯”的“分类基准”比赛中,他们还追平了最快数据分类率的世界纪录,172分钟内数据分类量达到1万亿字节,不过使用的计算机资源只有原纪录创造者计算机资源的1/4。 展开更多
关键词 美国加州大学 计算机科学家 "太字节障碍" 数据分类速度
下载PDF
Edge-Weighted Centroidal Voronoi Tessellations 被引量:2
2
作者 Jie Wang Xiaoqiang Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第2期223-244,共22页
Most existing applications of centroidal Voronoi tessellations(CVTs) lack consideration of the length of the cluster boundaries.In this paper we propose a new model and algorithms to produce segmentations which would ... Most existing applications of centroidal Voronoi tessellations(CVTs) lack consideration of the length of the cluster boundaries.In this paper we propose a new model and algorithms to produce segmentations which would minimize the total energy—a sum of the classic CVT energy and the weighted length of cluster boundaries.To distinguish it with the classic CVTs,we call it an Edge-Weighted CVT(EWCVT).The concept of EWCVT is expected to build a mathematical base for all CVT related data classifications with requirement of smoothness of the cluster boundaries.The EWCVT method is easy in implementation,fast in computation,and natural for any number of clusters. 展开更多
关键词 Centroidal Voronoi tessellations cluster boundaD edge detection clustering image processing.
下载PDF
DISCRIMINANT ANALYSIS BASED ON STATISTICAL DEPTH 被引量:3
3
作者 Jiao JIN·Hengjian CUI School of Mathematical Sciences,Key Laboratory of Mathematics and Complex Systems,Ministry of Education, Beijing Normal University,Beijing 100875,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第2期362-371,共10页
In the past two decades,many statistical depth functions seemed as powerful exploratoryand inferential tools for multivariate data analysis have been presented.In this paper,a new depthfunction family that meets four ... In the past two decades,many statistical depth functions seemed as powerful exploratoryand inferential tools for multivariate data analysis have been presented.In this paper,a new depthfunction family that meets four properties mentioned in Zuo and Serfling(2000)is proposed.Then aclassification rule based on the depth function family is proposed.The classification parameter b couldbe modified according to the type-Ⅰ error α,and the estimator of b has the consistency and achievesthe convergence rate n^(-1/2).With the help of the proper selection for depth family parameter c,theapproach for discriminant analysis could minimize the type-Ⅱ error β.A simulation study and a realdata example compare the performance of the different discriminant methods. 展开更多
关键词 DEPTH discriminant analysis location parameter MVE scatter matrix.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部