As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in effic...As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in efficient manner becomes one of the key challenges in HF communication. Spectrum prediction infers the future spectrum status from history spectrum data by exploring the inherent correlations and regularities. The investigation of HF electromagnetic environment data reveals the correlations and predictability of HF frequency band in both time and frequency domain. To solve this problem, we develop a Spectrum Prediction-based Frequency Band Pre-selection(SP-FBP) for HF communications. The pre-selection of HF frequency band mainly incorporated in prediction of HF spectrum occupancy and prediction of HF usable frequency, which provide the frequency band ranking of spectrum occupancy and alternative frequency for spectrum sensing, respectively. Performance evaluation via real-world HF spectrum data shows that SP-FBP significantly improves the efficiency of finding quality frequency in HF communications.展开更多
基金the Project of National Natural Science Foundation of China (Grant No. 61471395, No. 61301161, and No. 61501510)partly supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20161125 and No. BK20150717)
文摘As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in efficient manner becomes one of the key challenges in HF communication. Spectrum prediction infers the future spectrum status from history spectrum data by exploring the inherent correlations and regularities. The investigation of HF electromagnetic environment data reveals the correlations and predictability of HF frequency band in both time and frequency domain. To solve this problem, we develop a Spectrum Prediction-based Frequency Band Pre-selection(SP-FBP) for HF communications. The pre-selection of HF frequency band mainly incorporated in prediction of HF spectrum occupancy and prediction of HF usable frequency, which provide the frequency band ranking of spectrum occupancy and alternative frequency for spectrum sensing, respectively. Performance evaluation via real-world HF spectrum data shows that SP-FBP significantly improves the efficiency of finding quality frequency in HF communications.