期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
局部特征关系下的数据回归及软测量建模 被引量:1
1
作者 张勤 苗爱敏 李鹏 《自动化仪表》 CAS 2017年第6期6-11,共6页
针对复杂工业过程中存在的数据非线性的问题,对基于数据局部特征的回归模型构建和软测量建模方法进行研究。基于邻域保持嵌入(NPE)算法思想,利用数据间局部关系特征,建立多目标的回归优化函数,提出了基于局部的数据回归(LDR)算法。该方... 针对复杂工业过程中存在的数据非线性的问题,对基于数据局部特征的回归模型构建和软测量建模方法进行研究。基于邻域保持嵌入(NPE)算法思想,利用数据间局部关系特征,建立多目标的回归优化函数,提出了基于局部的数据回归(LDR)算法。该方法基于数据的局部关系和邻域特征,在保留输入数据和输出数据局部特征的同时,获取数据间的最大相关关系。通过数据低维潜变量获取数据的回归关系,并建立软测量预测模型。将模型应用于工业案例中,预估产品的质量和难以在线测量的关键变量。脱丁烷塔的案例研究证明了所提出的方法在变量预测方面的有效性。与基于全局特征的软测量模型的对比分析结果表明,所提出的LDR在获取非线性数据相关性和增强数据预测精度方面具有显著的改善效果。 展开更多
关键词 工业过程 邻域保持嵌入 数据回归算法 流形学习 软测量 数据建模 局部特征 质量预测
下载PDF
应用潜在分类泊松回归模型及EM算法研究网络购物使用次数 被引量:5
2
作者 王芯 吕晓玲 《统计与决策》 CSSCI 北大核心 2011年第1期7-9,共3页
随着网络的兴起,网上购物在人们的生活中发挥着越来越重要的作用。网上购物以其方便快捷等特点吸引了很多购物者,但是也有一些人质疑网上购物安全性、不可触摸性等问题。什么因素影响人们对网络购物的选择?人们由于对网络购物的态度取... 随着网络的兴起,网上购物在人们的生活中发挥着越来越重要的作用。网上购物以其方便快捷等特点吸引了很多购物者,但是也有一些人质疑网上购物安全性、不可触摸性等问题。什么因素影响人们对网络购物的选择?人们由于对网络购物的态度取向不同可分为多少潜在的类别?文章应用潜在分类泊松回归模型及EM算法分析大学生网上购物的陈述偏好数据,回答了以上两个问题,得到了十分有意义的结果。 展开更多
关键词 网上购物 影响因素 潜在分类泊松回归模型EM算法陈述偏好数据
下载PDF
Using Statistical Learning Algorithms in Regional Landslide Susceptibility Zonation with Limited Landslide Field Data 被引量:2
3
作者 WANG Yi-ting SEIJMONSBERGEN Arie Christoffel +1 位作者 BOUTEN Willem CHEN Qing-tao 《Journal of Mountain Science》 SCIE CSCD 2015年第2期268-288,共21页
Regional Landslide Susceptibility Zonation(LSZ) is always challenged by the available amount of field data, especially in southwestern China where large mountainous areas and limited field information coincide. Statis... Regional Landslide Susceptibility Zonation(LSZ) is always challenged by the available amount of field data, especially in southwestern China where large mountainous areas and limited field information coincide. Statistical learning algorithms are believed to be superior to traditional statistical algorithms for their data adaptability. The aim of the paper is to evaluate how statistical learning algorithms perform on regional LSZ with limited field data. The focus is on three statistical learning algorithms, Logistic Regression(LR), Artificial Neural Networks(ANN) and Support Vector Machine(SVM). Hanzhong city, a landslide prone area in southwestern China is taken as a study case. Nine environmental factors are selected as inputs. The accuracies of the resulting LSZ maps are evaluated through landslide density analysis(LDA), receiver operating characteristic(ROC) curves and Kappa index statistics. The dependence of the algorithm on the size of field samples is examined by varying the sizes of the training set. The SVM has proven to be the most accurate and the most stable algorithm at small training set sizes and on all known landslide sizes. The accuracy of SVM shows a steadilyincreasing trend and reaches a high level at a small size of the training set, while accuracies of LR and ANN algorithms show distinct fluctuations. The geomorphological interpretations confirm the strength of SVM on all landslide sizes. Our results show that the strengths of SVM in generalization capability and model robustness make it an appropriate and efficient tool for regional LSZ with limited landslide field samples. 展开更多
关键词 Landslide Susceptibility Zonation(LSZ) Logistic Regression(LR) Artificial Neural Network(ANN) Support Vector Machine(SVM) Regional scale Southwest China
下载PDF
Classification and Regression Methods with Data Mining Algorithms
4
作者 Andrej Trnka 《Computer Technology and Application》 2011年第3期227-231,共5页
This article deals with implementation of the classification and regression trees into the DMAIC phases of Six Sigma methodology. Six Sigma methodology seeks to improve the quality of manufacturing process by identify... This article deals with implementation of the classification and regression trees into the DMAIC phases of Six Sigma methodology. Six Sigma methodology seeks to improve the quality of manufacturing process by identifying and minimizing variability of this process. Using the classification, regression and segmentation trees as a part of the Data Mining methods could improve results of DMAIC phases. This improvement has a direct impact on the Sigma performance level of processes. The author introduces research results of implementation Data Mining algorithms into retail sales promotion. The author implements classification and regression techniques in our research. As a software tool has been selected SPSS PASW Modeler. The author deals with more data mining algorithms ad their implementation in the DMAIC phases. The article is divided into several parts. The first part is the introduction to Six Sigma methodology, the second deals with classification and regression trees. The third part describes tree research focused on the implementation of data mining algorithms and the fourth section summarizes the research results. 展开更多
关键词 CLASSIFICATION data mining DMAIC regression Six Sigma.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部