期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于堆叠降噪自编码器的肝癌亚型分类
1
作者 张甜甜 赵庶旭 王小龙 《计算机应用与软件》 北大核心 2024年第6期79-84,共6页
肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大... 肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大量的冗余特征和较少的可用临床标签样本。堆叠降噪编码器(SDAE)是能够从海量数据中获取有效特征的高效模型,因此基于SDAE模型提出一种层次式堆叠降噪编码器,来学习肝癌的RNA表达、miRNA表达和DNA甲基化数据的特征并进行整合和识别。实验结果表明:Hi-SDAE方法提高了对肝癌亚型分类的准确度,为肝癌针对性治疗提供了更有价值的参考依据。 展开更多
关键词 降噪 自动编码器 数据降维 多组学整合 肝癌亚型
下载PDF
堆叠自编码器在样本不充足下的轴承故障诊断方法 被引量:6
2
作者 王晓玉 刘桂芳 +2 位作者 韩宝坤 王金瑞 石兆婷 《噪声与振动控制》 CSCD 北大核心 2021年第2期100-104,110,共6页
深度学习作为一种实用的大数据处理工具,在机械智能故障诊断领域也受到广泛关注,许多研究者已经成功地将深度学习模型应用于故障诊断领域。但这些研究往往忽略了两个重要的问题:(1)当原始训练数据集不足时,模型训练过程不理想;(2)网络... 深度学习作为一种实用的大数据处理工具,在机械智能故障诊断领域也受到广泛关注,许多研究者已经成功地将深度学习模型应用于故障诊断领域。但这些研究往往忽略了两个重要的问题:(1)当原始训练数据集不足时,模型训练过程不理想;(2)网络模型的学习内容不明确。为了克服上述不足,提出一种新的数据增强的堆叠自编码器(DESAE)框架,该框架由数据增强模块和故障分类模块组成。在数据增强模块中,采用SAE生成模拟信号,对不充足的训练数据进行增强。在故障分类模块中,利用增强的数据集训练另一个SAE模型并进行故障样本类型识别。同时,利用轴承数据集验证该方法的有效性。此外,为了更便于理解DESAE工作过程,对其各层学习特性进行可视化分析。 展开更多
关键词 智能故障诊断 深度学习 数据增强的堆叠自编码器 仿真信号
下载PDF
面向Kinect骨骼运动数据优化的堆叠双向循环自编码器
3
作者 杨晶 李书杰 刘晓平 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第12期1633-1639,1651,共8页
深度相机Kinect获取的人体骨骼运动数据含有大量噪声并且骨骼节点较少,数据细节层次较低。针对该问题,文章提出一种用于优化Kinect骨骼运动数据的网络,该网络由6个双向循环自编码器堆叠构成,通过堆叠结构提高数据的平滑自然性,并在训练... 深度相机Kinect获取的人体骨骼运动数据含有大量噪声并且骨骼节点较少,数据细节层次较低。针对该问题,文章提出一种用于优化Kinect骨骼运动数据的网络,该网络由6个双向循环自编码器堆叠构成,通过堆叠结构提高数据的平滑自然性,并在训练阶段利用隐变量约束确保骨骼运动数据细节层次提高后仍具有合理的骨骼结构。在运行阶段,采用滑窗处理方式获得长序列的优化结果。实验结果表明,该网络得到的优化后数据具有更好的平滑性并能保持更为合理的骨骼结构,能够达到用低精度Kinect设备获取高精度动捕数据的目标。 展开更多
关键词 深度相机Kinect 数据优化 自编码器 隐变量约束 滑窗
下载PDF
基于堆叠降噪自编码器的配电数据清洗方法 被引量:2
4
作者 杜舒明 赵旭 李情 《信息技术》 2021年第4期80-85,共6页
准确高效的异常数据识别与缺失数据恢复是电力网络稳定运行的基础。提出了一种配网网络状态监测异常数据清洗方法。首先,利用堆叠降噪自编码器(SDAE)学习正常数据和异常数据特征,去除噪声后获取损失函数曲线。然后,采用Bootstrap方法估... 准确高效的异常数据识别与缺失数据恢复是电力网络稳定运行的基础。提出了一种配网网络状态监测异常数据清洗方法。首先,利用堆叠降噪自编码器(SDAE)学习正常数据和异常数据特征,去除噪声后获取损失函数曲线。然后,采用Bootstrap方法估计置信区间,设置异常数据识别门限,通过多分类支持向量机完成异常类型识别。最后,针对缺失数据,设计了Pearson相关系数进行插补恢复。实验结果表明,该方法能够有效识别配电网络异常数据类型,且缺失数据恢复性能优于现有方法。 展开更多
关键词 配电网络 数据清洗 降噪自编码器 BOOTSTRAP方法 支持向量机
下载PDF
基于堆叠自动编码器的汽轮发电机多指标故障诊断模型 被引量:4
5
作者 叶林 葛鸥翔 +5 位作者 郭永红 梅东升 毛永清 王斌 路朋 戴斌华 《中国电机工程学报》 EI CSCD 北大核心 2022年第10期3656-3669,共14页
大型发电机的故障诊断对电网安全和经济运行具有重大影响,但由于实际操作中的故障数据较少,且预警指标单一无法满足汽轮发电机故障诊断的要求。因此,提出一种基于堆叠自动编码器的汽轮发电机多指标早期故障预警与诊断模型。首先,根据多... 大型发电机的故障诊断对电网安全和经济运行具有重大影响,但由于实际操作中的故障数据较少,且预警指标单一无法满足汽轮发电机故障诊断的要求。因此,提出一种基于堆叠自动编码器的汽轮发电机多指标早期故障预警与诊断模型。首先,根据多种相关性方法对数据进行降维处理,采用堆叠自动编码器来学习降维后数据之间的深层映射关系,并提取出重构误差;在此基础上,建立包括参数与测点温度的静态阈值,重构误差的自适应动态阈值,温度波动差值的动态阈值和电流及有功功率上升速率阈值的多指标综合故障预警与诊断模型;然后建立故障征兆–参数关联合集,将超过阈值的数据结合实际值与预测值的残差值,完成故障的具体诊断。最后,以京能集团河北涿州电厂以及山西某热电厂350MW汽轮发电机实际数据为例,验证所提出的基于堆叠自动编码器的汽轮发电机多指标故障诊断模型的有效性,算例分析表明,所提出的基于堆叠自动编码器的汽轮发电机多指标故障诊断模型能够提前2~10h预警故障并诊断出故障类型,为汽轮发电机安全稳定运行提供保障。 展开更多
关键词 汽轮发电机 叠自编码器 故障诊断 故障预警 数据驱动
下载PDF
结合增益率与堆叠自编码器的并行随机森林算法
6
作者 刘卫明 陈伟达 +1 位作者 毛伊敏 陈志刚 《计算机应用研究》 CSCD 北大核心 2023年第3期750-759,765,共11页
针对大数据环境下随机森林算法存在冗余与不相关特征过多、特征子空间信息含量不足以及并行化效率低等问题,提出了结合增益率与堆叠自编码器的并行随机森林算法PRFGRSAE(parallel random forest algorithm combining gain ratio and sta... 针对大数据环境下随机森林算法存在冗余与不相关特征过多、特征子空间信息含量不足以及并行化效率低等问题,提出了结合增益率与堆叠自编码器的并行随机森林算法PRFGRSAE(parallel random forest algorithm combining gain ratio and stacked auto encoders)。首先,提出了结合非线性归一化增益率和堆叠自编码器的降维策略DRNGRSAE(dimension reduction combining nonlinear normalization gain ratio and stacked auto encoders),通过过滤特征集中的冗余和不相关特征,并利用堆叠自编码器提取特征,有效减少了冗余以及不相关特征数;其次,提出了结合拉丁超立方抽样与归一化相关度的子空间选择策略SSLF(subspace selection strategy combining Latin hypercube sampling and feature class correlation),通过对特征集进行多层划分抽样,形成空间表达度较高的特征子空间,有效保证了特征子空间的信息含量;最后,提出结合可变动作学习自动机的reducer分配策略DSVLA(distribution strategy based on variable-action learning automata),使每个数据簇均匀分配到reducer进行处理,有效提高了并行化效率。实验结果表明,PRFGRSAE算法的加速比与准确度较IMRF、KSMRF和GAPRF算法都有显著提升,因此该算法应用于大数据处理,特别对包含较多特征的数据集有更高的精准度和并行效率。 展开更多
关键词 数据 MAPREDUCE 并行随机森林 增益率 自编码器
下载PDF
基于堆叠自动编码器的电力系统暂态稳定评估 被引量:78
7
作者 朱乔木 陈金富 +3 位作者 李弘毅 石东源 李银红 段献忠 《中国电机工程学报》 EI CSCD 北大核心 2018年第10期2937-2946,共10页
将深度学习的思想和模型引入电力系统暂态稳定评估研究中,提出一种基于堆叠自动编码器的电力系统暂态稳定评估方法。该方法无需人工计算形成输入特征,直接面向底层量测数据,通过深层架构建立量测数据与稳定类别之间的非线性映射关系... 将深度学习的思想和模型引入电力系统暂态稳定评估研究中,提出一种基于堆叠自动编码器的电力系统暂态稳定评估方法。该方法无需人工计算形成输入特征,直接面向底层量测数据,通过深层架构建立量测数据与稳定类别之间的非线性映射关系。采用一种“预训练一参数微调”的两阶段学习方法,同时引入稀疏化技术和Dropout技术对模型参数进行优化。训练后的模型能够依靠深层结构挖掘数据的隐藏模式,提取出有利于暂态稳定评估的高阶特征。此外,该方法能够通过大量无标注样本的无监督训练提高模型泛化能力,从而大大缩减训练样本时域仿真耗时。新英格兰10机39节点系统上的仿真结果表明所提方法比常规浅层评估方法的评估性能更加优越。 展开更多
关键词 深度学习 电力系统 暂态稳定评估 叠自编码器 底层量测数据
下载PDF
基于自编码器的高效信息化测绘处理研究
8
作者 刘颖 《科技资讯》 2024年第19期54-56,共3页
随着人工智能技术的发展,信息化测绘正逐渐迈向智能化。为了对信息化测绘数据进行清洗,研究采用了堆叠降噪自编码器,并引入了粒子群算法,来对该自编码器中的超参数进行寻优,以降低超参数对堆叠降噪自编码器性能的影响。结果显示,寻优后... 随着人工智能技术的发展,信息化测绘正逐渐迈向智能化。为了对信息化测绘数据进行清洗,研究采用了堆叠降噪自编码器,并引入了粒子群算法,来对该自编码器中的超参数进行寻优,以降低超参数对堆叠降噪自编码器性能的影响。结果显示,寻优后,堆叠降噪自编码器的相对误差百分比、均方根误差、平均绝对误差和平均百分比误差分别为1.06%、0.525%、0.315%和0.570%。该自编码器能够对测绘数据进行更好的清洗,误差更小,提高了数据质量。 展开更多
关键词 自编码器 降噪 测绘 数据清洗
下载PDF
基于数据增强SDAE-BiGRU的交流接触器剩余电寿命预测
9
作者 邢朝健 刘树鑫 +3 位作者 高书豫 刘洋 李静 曹云东 《高电压技术》 EI CAS CSCD 北大核心 2024年第11期4990-5004,共15页
针对目前交流接触器剩余电寿命存在单一特征预测精度低、未充分考虑开断前后的关联性和忽略了长时间序列特点的问题,该文提出基于数据增强堆叠降噪自动编码器-双向门控循环单元(stacked denoised autoencod-er-bidirection gated recurr... 针对目前交流接触器剩余电寿命存在单一特征预测精度低、未充分考虑开断前后的关联性和忽略了长时间序列特点的问题,该文提出基于数据增强堆叠降噪自动编码器-双向门控循环单元(stacked denoised autoencod-er-bidirection gated recurrent unit,SDAE-BiGRU)的交流接触器剩余电寿命预测方法。首先,通过交流接触器全寿命试验提取特征参量,采用近邻成分分析(neighborhood component analysis,NCA)和斯皮尔曼等级相关系数选择最优特征子集,来有效表征电寿命退化信息。然后,对最优特征子集进行数据增强,充分考虑前后状态的关联性,并利用SDAE对增强后的特征信息进行融合来降低输入维度。最后,将交流接触器剩余电寿命视为长时序问题,通过BiGRU进行时序预测。实例分析表明,该模型比循环神经网络(recurrent neural network,RNN)、长短期记忆网络(long short-term memory,LSTM)、GRU、BiGRU和SDAE-BiGRU模型预测效果好,平均有效精度达到96.68%,有效证明了时序预测模型应用在电器设备剩余寿命预测领域中的可行性。 展开更多
关键词 交流接触器 特征选择 数据增强 降噪自动编码器 双向门控循环单元
下载PDF
基于数据增强与流数据处理的Tor流量分析模型 被引量:1
10
作者 席荣康 蔡满春 芦天亮 《计算机工程》 CAS CSCD 北大核心 2023年第3期177-184,共8页
Tor流量分析技术为打击利用Tor匿名通信工具从事的暗网犯罪活动提供了技术支撑,但目前存在数据难于收集、数据集不平衡、模型抗概念漂移能力差等问题。提出一种结合堆叠去噪自编码器和在线序列极限学习机的Tor流量分析模型。对原始Tor P... Tor流量分析技术为打击利用Tor匿名通信工具从事的暗网犯罪活动提供了技术支撑,但目前存在数据难于收集、数据集不平衡、模型抗概念漂移能力差等问题。提出一种结合堆叠去噪自编码器和在线序列极限学习机的Tor流量分析模型。对原始Tor PACP包进行分割、去噪处理并提取特征序列。在此基础上,将一维序列转化为可视化灰度图并输入改进多尺寸深度卷积生成对抗网络,生成Tor流量样本以平衡数据集,利用堆叠降噪自动编码器进行序列降维并将特征输入在线序列极限学习机实现Tor匿名流量的在线流识别。实验结果表明,改进多尺寸深度卷积生成对抗网络可用于提升数据集质量并提高模型识别率约2.8个百分点,结合在线序列极限学习机和堆叠去噪自编码器的流量分析模型准确率可达95.7%,识别效率较传统卷积神经网络和长短期记忆网络模型有较大提升。 展开更多
关键词 洋葱路由 概念漂移 数据挖掘 数据增强 深度卷积生成对抗网络 去噪自动编码器 在线序列极限学习机
下载PDF
基于山区大气电场演变特征与雷电定位数据的雷电临近预警方法
11
作者 齐玥 杨庆 +2 位作者 王科 胡逸 徐肖伟 《高电压技术》 EI CAS CSCD 北大核心 2024年第10期4760-4771,共12页
由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法... 由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法。通过分析典型高原山区不同雷暴发展情况下的大气电场演化特性,发现山区大气电场可作为雷电定位数据的补充源,充分表征雷云剧烈放电和雷暴临近发展的特征信息。在预警过程中,首先将大气电场形态学梯度提取的快速抖动、暂态突变特征与时空匹配的地闪活动特征输入堆叠稀疏自编码器网络模型,判断监测区域附近是否出现雷云放电迹象,再利用雷暴距离变化或者电场波形变化判断雷电活动的临近趋势,最后综合两者的结果完成半径15km监测区域的雷电活动短时预警。在2023年云南山区雷雨季节的雷暴算例分析中,通过双源数据共同提取的山区雷暴活动预警特征的有效识别,可以实现预警准确率为90%,约44%的警报提前时间不小于30 min。 展开更多
关键词 高原山区 大气电场特征 雷电定位数据 雷电临近预警 稀疏自编码器网络
下载PDF
基于改进堆叠自动编码器的循环冷却水系统工艺介质温度预测控制方法 被引量:3
12
作者 左为恒 宋璐璐 《控制与决策》 EI CSCD 北大核心 2020年第12期2835-2844,共10页
循环冷却水系统中冷却供给量与工艺介质冷却需求量之间往往存在"大马拉小车"的现象,造成大量的冷却资源浪费.为了匹配冷却需求量与供给量,提高循环冷却水系统能源利用率,给出一种基于多工艺介质温度目标循环冷却水最小压差控... 循环冷却水系统中冷却供给量与工艺介质冷却需求量之间往往存在"大马拉小车"的现象,造成大量的冷却资源浪费.为了匹配冷却需求量与供给量,提高循环冷却水系统能源利用率,给出一种基于多工艺介质温度目标循环冷却水最小压差控制系统,并将深度学习引入工艺介质温度预测研究中,提出一种基于改进堆叠自动编码器(improved stacked auto encoders,ISAE)的工艺介质温度预测方法.首先,对工业现场数据进行清洗;然后,将多个自动编码器堆叠,构建深度学习网络结构,采用"逐层贪婪无监督预训练-参数微调"方法训练网络参数,并基于均方根反向传播(root mean square back propagation,RMSProp)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,利用某化工厂历史运行数据进行测试,与浅层神经网络、未改进的SAE方法进行比较,所得结果表明,所提出的ISAE方法的预测准确性高,预测的工艺介质温度平均百分比误差仅为0.85%,且泛化能力优于未改进的SAE算法. 展开更多
关键词 循环冷却水系统 工艺介质温度 预测控制 改进叠自编码器 深度学习 数据驱动
原文传递
智能通风矿井风速传感器数据清洗模型 被引量:3
13
作者 赵丹 沈志远 +2 位作者 宋子豪 解丽娜 刘柏辰 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期56-62,共7页
针对当前智能通风矿井风速传感器监测数据清洗破坏信息完整性等问题,提出一种基于堆叠降噪自编码器(SDAE)的矿井风速传感器监测数据清洗模型。首先应用通风系统正常运行状态下的风速数据样本进行SDAE训练,并基于核密度估计(KDE)方法获... 针对当前智能通风矿井风速传感器监测数据清洗破坏信息完整性等问题,提出一种基于堆叠降噪自编码器(SDAE)的矿井风速传感器监测数据清洗模型。首先应用通风系统正常运行状态下的风速数据样本进行SDAE训练,并基于核密度估计(KDE)方法获取训练样本的重构误差上限及容限时间;然后分析测试样本中重构误差、误差持续时间与训练样本的重构误差上限、容限时间之间的关系,辨别“脏”数据类型;最后利用东山煤矿风速传感器监测数据进行有故障样本和无故障样本的数据清洗试验。结果表明:所提模型能自动辨别噪声点和缺失值,并通过数据重构修复“脏”数据,在过滤干扰数据的同时可有效保留通风故障状态信息,相比于降噪自编码器(DAE)、长短时记忆(LSTM)神经网络和卡尔曼滤波(KF)等其他数据清洗模型,该模型的平均绝对误差(MAE)和均方根误差(RMSE)平均降低了75.42%和74.98%。 展开更多
关键词 矿井通风 风速传感器 数据清洗 数据重构 降噪自编码器(SDAE)
下载PDF
面向不平衡数据和特征冗余的网络入侵检测 被引量:1
14
作者 张翼英 王德龙 +2 位作者 渠慧颖 张傲 张磊 《天津科技大学学报》 CAS 2023年第5期57-63,共7页
为了解决传统方法因数据不平衡及特征冗余而导致检测准确率不高的问题,提出了一种结合SMOTE(synthetic minority over-sampling technique)算法采样的SDAE-LSTM(stacked deep auto-encoder-long short term memory)入侵检测模型。首先,... 为了解决传统方法因数据不平衡及特征冗余而导致检测准确率不高的问题,提出了一种结合SMOTE(synthetic minority over-sampling technique)算法采样的SDAE-LSTM(stacked deep auto-encoder-long short term memory)入侵检测模型。首先,针对数据不平衡问题,采用SMOTE算法在少数类样本点之间随机插入样本增加其数量,达到类间平衡的目的。其次,针对特征冗余问题,利用堆叠式深度自编码器(stacked deep auto-encoder,SDAE)进行降维,实现数据的深度特征提取。最后,基于长短期记忆(long short term memory,LSTM)神经网络,精准捕获网络入侵特征,准确地实现入侵检测。通过在UNSW-NB15数据集上的大量实验,有效证明了本文模型与其他模型相比有着更好的入侵检测效果。 展开更多
关键词 不平衡数据 特征冗余 SMOTE 式深度自编码器 长短期记忆神经网络 网络入侵检测
下载PDF
基于数据降维与精确欧氏局部敏感哈希的k近邻推荐方法 被引量:5
15
作者 郭喻栋 郭志刚 +1 位作者 陈刚 魏晗 《计算机应用》 CSCD 北大核心 2017年第9期2665-2670,2683,共7页
针对基于k近邻的协同过滤推荐算法中存在的评分特征数据维度过高、k近邻查找速度慢,以及评分冷启动等问题,提出基于数据降维与精确欧氏局部敏感哈希(E^2LSH)的k近邻协同过滤推荐算法。首先,融合评分数据、用户属性数据以及项目类别数据... 针对基于k近邻的协同过滤推荐算法中存在的评分特征数据维度过高、k近邻查找速度慢,以及评分冷启动等问题,提出基于数据降维与精确欧氏局部敏感哈希(E^2LSH)的k近邻协同过滤推荐算法。首先,融合评分数据、用户属性数据以及项目类别数据,将融合后的数据作为输入对堆叠降噪自编码(SDA)神经网络进行训练,取神经网络编码部分最后一个隐层的值作为输入数据的特征编码,完成非线性降维。然后,利用精确欧氏局部敏感哈希算法对降维后的数据建立索引,通过检索得到目标用户或目标项目的相似近邻。最后,计算目标与近邻之间的相似度,利用相似度对近邻的评分记录加权得到目标用户对目标项目的预测评分。在标准数据集上的实验结果表明,在冷启动场景下,均方根误差比基于局部敏感哈希的推荐算法(LSH-ICF)平均降低了约7.2%,平均运行时间和LSH-ICF相当。表明该方法在保证推荐效率的前提下,缓解了评分冷启动问题。 展开更多
关键词 信息推荐 降噪自编码器 精确欧氏局部敏感哈希 数据降维 冷启动
下载PDF
基于自适应指数蝙蝠和SAE的并行大数据分类 被引量:1
16
作者 钱真坤 周思吉 《西南师范大学学报(自然科学版)》 CAS 2022年第6期8-14,共7页
为解决深度学习进行大数据分类时效率低的问题,本文提出一种基于自适应指数蝙蝠和堆叠自编码器(SAE)的并行大数据分类方法.在并行计算框架中,Map阶段使用自适应指数蝙蝠算法进行特征选择,自适应指数加权移动平均值蝙蝠算法(AEB)由指数... 为解决深度学习进行大数据分类时效率低的问题,本文提出一种基于自适应指数蝙蝠和堆叠自编码器(SAE)的并行大数据分类方法.在并行计算框架中,Map阶段使用自适应指数蝙蝠算法进行特征选择,自适应指数加权移动平均值蝙蝠算法(AEB)由指数加权移动平均值(EWMA)和自适应权重策略得到.将选择的特征作为Reduce输入进行大数据分类,Reduce阶段使用AEB算法训练的深度堆叠自动编码器(SAE)进行分类,进一步提高了分类精度.实验结果表明,针对不同的训练数据百分比,本文所提方法在准确度和真正例率(TPR)性能方面优于其他现有方法. 展开更多
关键词 数据 MAPREDUCE 自适应指数蝙蝠算法 深度叠自编码器
下载PDF
深度学习技术在信息系统数据分析中的应用 被引量:1
17
作者 林伟声 《电脑与电信》 2017年第6期51-53,共3页
深度学习是近年来机器学习领域的一个热点研究方向,其主要方法是通过增加学习器的层数,增大其通道数和参数的规模,借助大数据学习时代的超强计算能力,发现原始数据集中的高层抽象概念,为应用领域的决策支持服务。探讨了在信息系统的数... 深度学习是近年来机器学习领域的一个热点研究方向,其主要方法是通过增加学习器的层数,增大其通道数和参数的规模,借助大数据学习时代的超强计算能力,发现原始数据集中的高层抽象概念,为应用领域的决策支持服务。探讨了在信息系统的数据分析任务中深度学习技术的应用方法,着重阐述了卷积神经网络和堆叠自动编码器的主要原理和实现方法,及其在信息系统的数据分析中的应用案例,并对其应用价值进行了分析。 展开更多
关键词 深度学习 信息系统数据分析 卷积神经网络 叠自编码器
下载PDF
融合Transformer和卷积LSTM的轨迹分类网络 被引量:1
18
作者 夏英 陈航 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期29-38,共10页
为了减少原始轨迹数据的噪声,充分提取轨迹的时空特征,提高基于轨迹数据的交通模式分类精度,提出一种融合堆叠降噪自编码器、Transformer和卷积长短期记忆网络的轨迹分类网络(networks fusing stacked denoising auto-encoder, Transfor... 为了减少原始轨迹数据的噪声,充分提取轨迹的时空特征,提高基于轨迹数据的交通模式分类精度,提出一种融合堆叠降噪自编码器、Transformer和卷积长短期记忆网络的轨迹分类网络(networks fusing stacked denoising auto-encoder, Transformer and ConvLSTM,SDAETC)。通过堆叠降噪自编码器减少原始轨迹数据中的噪声;利用结合了Transformer的递归图自编码器,提取到更为丰富的时间特征,同时利用特征图自编码器提取空间特征;改进卷积长短期记忆网络,充分提取轨迹中的时空特征,并与提取到的时间特征和空间特征相融合,从而实现交通模式分类。实验结果表明,提出的SDAETC与基线模型相比,在GeoLife和SHL数据集上的准确率分别提升了1.8%和2%。此外,消融实验结果和模型训练时间分析表明,引入堆叠降噪自编码器、Transfomer和ConvLSTM虽然增加了时间消耗,但是对分类精度有积极贡献。 展开更多
关键词 轨迹数据 交通方式分类 时空特征 降噪自编码器 TRANSFORMER 卷积长短期记忆网络
下载PDF
ARM+FPGA双核计算的配电自动化终端设计
19
作者 郑军生 杨俊哲 +1 位作者 许文秀 吴宏伟 《自动化仪表》 CAS 2024年第1期59-63,共5页
为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(S... 为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(SAE)深度学习模型基础上融合神经网络(NN)模型,应用过程中改善传统NN对分层节点数目的限制。试验结果表明,所设计终端随着系统运行能达到95%以上的精度,而现有SAE模型仅达到85%左右的精度。通过与文献[1]和文献[2]方法的对比可知,所设计终端有较高的调度能力。该设计显著提高了配电网数据信息的分析精度,大幅提升了电网应用对数据信息处理的准确度和效率。 展开更多
关键词 配电自动化终端 现场可编程门阵列 式自动编码器 神经网络 数据调试 分析精度 调度能力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部