This paper describes the RTSS simulation-based performance evaluation method during the upgrade of the HT-7 data processing system to a distributed environment. We present the main concepts and steps of the method. Qu...This paper describes the RTSS simulation-based performance evaluation method during the upgrade of the HT-7 data processing system to a distributed environment. We present the main concepts and steps of the method. Queueing modeling and steady-state operational analysis techniques are also used for analytic modeling. Both simulation and analysis studies on the HT-7 data processing system indicate that in comparison with conventional time-shared systems,a client/server system can significantly reduce the completion time of raw data display,real-time data processing and data transfer in the online system,raise the workload capacity and reduce the average waiting time of the off-line system.展开更多
The demands of programmability have become more and more exigent as novel network services appear, such as E-commerce, social softwares, and online videos. Commodity multi-core CPUs have been widely applied in network...The demands of programmability have become more and more exigent as novel network services appear, such as E-commerce, social softwares, and online videos. Commodity multi-core CPUs have been widely applied in network packet processing to get high programmability and reduce the time-to-market. However,there is a great gap between the packet processing performance of commodity multi-core and that of the traditional packet processing hardware, e.g., NP(Network Process). Recently, optimization of the packet processing performance of commodity multi-cores has become a hot topic in industry and academia. In this paper, based on a detailed analysis of the packet processing procedure, firstly we identify two dominating overheads, namely the virtual-to-physical address translation and the packet buffer management. Secondly, we make a comprehensive survey on the current optimization methods. Thirdly, based on the survey, the heterogeneous architecture of the commodity multi-core + FPGA is proposed as a promising way to improve the packet processing performance.Fourthly, a novel Self-Described Buffer(SDB) management technology is introduced to eliminate the overheads of the allocation and deallocation of the packet buffers offloaded to FPGA. Then, an evaluation testbed, named PIOT(Packet I/O Testbed), is designed and implemented to evaluate the packet forwarding performance. I/O capacity of different commodity multi-core CPUs and the performance of optimization methods are assessed and compared based on PIOT. At last, the future work of packet processing optimization on multi-core CPUs is discussed.展开更多
文摘This paper describes the RTSS simulation-based performance evaluation method during the upgrade of the HT-7 data processing system to a distributed environment. We present the main concepts and steps of the method. Queueing modeling and steady-state operational analysis techniques are also used for analytic modeling. Both simulation and analysis studies on the HT-7 data processing system indicate that in comparison with conventional time-shared systems,a client/server system can significantly reduce the completion time of raw data display,real-time data processing and data transfer in the online system,raise the workload capacity and reduce the average waiting time of the off-line system.
基金supported by National High-tech R&D Program of China(863 Program)(Grant No.2015AA0156-03)National Natural Science Foundation of China(Grant No.61202483)
文摘The demands of programmability have become more and more exigent as novel network services appear, such as E-commerce, social softwares, and online videos. Commodity multi-core CPUs have been widely applied in network packet processing to get high programmability and reduce the time-to-market. However,there is a great gap between the packet processing performance of commodity multi-core and that of the traditional packet processing hardware, e.g., NP(Network Process). Recently, optimization of the packet processing performance of commodity multi-cores has become a hot topic in industry and academia. In this paper, based on a detailed analysis of the packet processing procedure, firstly we identify two dominating overheads, namely the virtual-to-physical address translation and the packet buffer management. Secondly, we make a comprehensive survey on the current optimization methods. Thirdly, based on the survey, the heterogeneous architecture of the commodity multi-core + FPGA is proposed as a promising way to improve the packet processing performance.Fourthly, a novel Self-Described Buffer(SDB) management technology is introduced to eliminate the overheads of the allocation and deallocation of the packet buffers offloaded to FPGA. Then, an evaluation testbed, named PIOT(Packet I/O Testbed), is designed and implemented to evaluate the packet forwarding performance. I/O capacity of different commodity multi-core CPUs and the performance of optimization methods are assessed and compared based on PIOT. At last, the future work of packet processing optimization on multi-core CPUs is discussed.