The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the ...The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.展开更多
The differentiation status of neuroblastoma (NB) strongly correlates with its clinical outcomes; however, the molecular mechanisms driving maintenance of sternness and differentiation remain poorly understood. Here,...The differentiation status of neuroblastoma (NB) strongly correlates with its clinical outcomes; however, the molecular mechanisms driving maintenance of sternness and differentiation remain poorly understood. Here, we show that plant homeodomain finger-containing protein 20 (PHF20) functions as a critical epigenetic regulator in sustaining stem cell-like phenotype of NB by using CRISPR/Casg-based targeted knockout (KO) for high-throughput screening of gene function in NB cell differentiation. The expression of PHF20 in NB was significantly associated with high aggressiveness of the tumor and poor outcomes for NB patients. Deletion of PHF20 inhibited NB cell proliferation, invasive migration, and stem ceU-Uke traits. Mechanistically, PHF20 interacts with poly(ADP-ribose) polymerase 1 (PARP1) and directly binds to promoter regions of octamer-binding transcription factor 4 (OCT4) and sex determining region Y-box 2 (SOX2) to modulate a histone mark associated with active transcription, trimethylation of lysine 4 on histone H3 protein subunit (H3K4me3). Overexpression of OCT4 and SOX2 restored growth and progression of PHF20 KO tumor cells. Consistently, OCT4 and SOX2 protein levels in clinical NB specimens were positively correlated with PHF20 expression. Our results establish PHF20 as a key driver of NB stem cell-like properties and aggressive behaviors, with implications for prognosis and therapy.展开更多
基金supported by the National Key R&D Program (No. 2016YFC1401900)the China Postdoctoral Science Foundation (No. 2017M620293)+3 种基金the National Natural Science Foundation of China (Nos. 61379127, 61379128, 61572448)the Fundamental Research Funds for the Central Universities (No. 201713016)Qingdao National Labor for Marine Science and Technology Open Research Project (No. QNLM2016ORP0405)Natural Science Foundation of Shandong (No. ZR2018BF006)
文摘The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.
基金This work was supported by grants from the National Natural Science Foundation of China (81572766 and 31771630), the National Key Research and Development Program of China (2017YFA0103800), Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06S029), Guangdong Natural Science Foundation (2016A030313215 and 2016A030313238), SYSU Young Teachers Training Program (16YKZD14) and grants (CA101795 and IU54CA210181) from U.S. National Cancer Institute, National Institutes of Health (NIH), DOD (W81XWH-16- 1-0417), and CPRIT (DP150099, RP170537, and RP150611).
文摘The differentiation status of neuroblastoma (NB) strongly correlates with its clinical outcomes; however, the molecular mechanisms driving maintenance of sternness and differentiation remain poorly understood. Here, we show that plant homeodomain finger-containing protein 20 (PHF20) functions as a critical epigenetic regulator in sustaining stem cell-like phenotype of NB by using CRISPR/Casg-based targeted knockout (KO) for high-throughput screening of gene function in NB cell differentiation. The expression of PHF20 in NB was significantly associated with high aggressiveness of the tumor and poor outcomes for NB patients. Deletion of PHF20 inhibited NB cell proliferation, invasive migration, and stem ceU-Uke traits. Mechanistically, PHF20 interacts with poly(ADP-ribose) polymerase 1 (PARP1) and directly binds to promoter regions of octamer-binding transcription factor 4 (OCT4) and sex determining region Y-box 2 (SOX2) to modulate a histone mark associated with active transcription, trimethylation of lysine 4 on histone H3 protein subunit (H3K4me3). Overexpression of OCT4 and SOX2 restored growth and progression of PHF20 KO tumor cells. Consistently, OCT4 and SOX2 protein levels in clinical NB specimens were positively correlated with PHF20 expression. Our results establish PHF20 as a key driver of NB stem cell-like properties and aggressive behaviors, with implications for prognosis and therapy.