科学研究在经历了实验科学、理论科学、计算科学阶段后,进入了数据密集型科学阶段,与之相伴的是大数据时代的到来.大数据泛指规模达到几百TB,甚至PB级的数据①,其典型的特征是分布、异构、低质量等.尽管传统数据库管理技术(特别是商业...科学研究在经历了实验科学、理论科学、计算科学阶段后,进入了数据密集型科学阶段,与之相伴的是大数据时代的到来.大数据泛指规模达到几百TB,甚至PB级的数据①,其典型的特征是分布、异构、低质量等.尽管传统数据库管理技术(特别是商业关系型数据库)在过去40年间取得了巨大成功,但是这些技术和系统无法有效管理支持数据密集型科学与工程(Data-Intensive Science and Engineering,DISE)的大数据.文中探讨数据密集型科学与工程的具体需求和现实挑战.它涵盖的内容表现在4个层面,包括数据存储与组织、计算方法、数据分析以及用户接口技术等.同时,数据质量、数据安全、数据监护等内容也需要在各层面得到重视.文中尝试梳理了数据密集型科学与工程的整体架构,回顾了相关领域的新近发展,分析了面临的挑战,探讨了未来的研究方向.展开更多
文摘科学研究在经历了实验科学、理论科学、计算科学阶段后,进入了数据密集型科学阶段,与之相伴的是大数据时代的到来.大数据泛指规模达到几百TB,甚至PB级的数据①,其典型的特征是分布、异构、低质量等.尽管传统数据库管理技术(特别是商业关系型数据库)在过去40年间取得了巨大成功,但是这些技术和系统无法有效管理支持数据密集型科学与工程(Data-Intensive Science and Engineering,DISE)的大数据.文中探讨数据密集型科学与工程的具体需求和现实挑战.它涵盖的内容表现在4个层面,包括数据存储与组织、计算方法、数据分析以及用户接口技术等.同时,数据质量、数据安全、数据监护等内容也需要在各层面得到重视.文中尝试梳理了数据密集型科学与工程的整体架构,回顾了相关领域的新近发展,分析了面临的挑战,探讨了未来的研究方向.