Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for wa...Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.展开更多
Using datasets on high-tech industries in Beijing as empirical studies, this paper attempts to interpret spatial shift of high-tech manufacturing firms and to examine the main determinants that have had the greatest e...Using datasets on high-tech industries in Beijing as empirical studies, this paper attempts to interpret spatial shift of high-tech manufacturing firms and to examine the main determinants that have had the greatest effect on this spatial evolution. We aimed at merging these two aspects by using firm level databases in 1996 and 2010. To explain spatial change of the high-tech firms in Beijing, the Kernel density estimation method was used for hotspot analysis and detection by comparing their locations in 1996 and 2010, through which spatial features and their temporal changes could be approximately plotted. Furthermore, to provide quantitative results, Ripley′s K-function was used as an instrument to reveal spatial shift and the dispersion distance of high-tech manufacturing firms in Beijing. By employing a negative binominal regression model, we evaluated the main determinants that have significantly affected the spatial evolution of high-tech manufacturing firms and compared differential influence of these locational factors on overall high-tech firms and each sub-sectors. The empirical analysis shows that high-tech industries in Beijing, in general, have evident agglomeration characteristics, and that the hotspot has shifted from the central city to suburban areas. In combination with the Ripley index, this study concludes that high-tech firms are now more scattered in metropolitan areas of Beijing as compared with 1996. The results of regression model indicate that the firms′ locational decisions are significantly influenced by the spatial planning and regulation policies of the municipal government. In addition, market processes involving transportation accessibility and agglomeration economy have been found to be important in explaining the dynamics of locational variation of high-tech manufacturing firms in Beijing. Research into how markets and the government interact to determine the location of high-tech manufacturing production will be helpful for policymakers to enact effective policies toward a more efficient urban spatial structure.展开更多
In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Provin...In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Province, China, with three methods: the soil profile statistics (SPS), GIS-based soil type (GST), and kriging interpolation (KI). The GST method, utilizing both pedological professional knowledge and GIS technology, was considered the most accurate method of the three estimations, with SOCD estimates for SPS 10% lower and KI 10% higher. The SOCD range for GST was 84% wider than KI as KI smoothing effect narrowed the SOCD range. Nevertheless, the coefficient of variation for SOCD with KI (41.7%) was less than GST and SPS. Comparing SOCD’s lower estimates for SPS versus GST, the major sources of uncertainty were the conflicting area of proportional relations. Meanwhile, the fewer number of soil profiles and the necessity of using the smoothing effect with KI were its sources of uncertainty. Moreover, for local detailed variations of SOCD, GST was more advantageous in reflecting the distribution pattern than KI.展开更多
文摘Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.
基金Under the auspices of National Natural Science Foundation of China(No.40971075)
文摘Using datasets on high-tech industries in Beijing as empirical studies, this paper attempts to interpret spatial shift of high-tech manufacturing firms and to examine the main determinants that have had the greatest effect on this spatial evolution. We aimed at merging these two aspects by using firm level databases in 1996 and 2010. To explain spatial change of the high-tech firms in Beijing, the Kernel density estimation method was used for hotspot analysis and detection by comparing their locations in 1996 and 2010, through which spatial features and their temporal changes could be approximately plotted. Furthermore, to provide quantitative results, Ripley′s K-function was used as an instrument to reveal spatial shift and the dispersion distance of high-tech manufacturing firms in Beijing. By employing a negative binominal regression model, we evaluated the main determinants that have significantly affected the spatial evolution of high-tech manufacturing firms and compared differential influence of these locational factors on overall high-tech firms and each sub-sectors. The empirical analysis shows that high-tech industries in Beijing, in general, have evident agglomeration characteristics, and that the hotspot has shifted from the central city to suburban areas. In combination with the Ripley index, this study concludes that high-tech firms are now more scattered in metropolitan areas of Beijing as compared with 1996. The results of regression model indicate that the firms′ locational decisions are significantly influenced by the spatial planning and regulation policies of the municipal government. In addition, market processes involving transportation accessibility and agglomeration economy have been found to be important in explaining the dynamics of locational variation of high-tech manufacturing firms in Beijing. Research into how markets and the government interact to determine the location of high-tech manufacturing production will be helpful for policymakers to enact effective policies toward a more efficient urban spatial structure.
基金Project supported by the Knowledge Innovation Project in Leading Edge Fields, Chinese Academy of Sciences(No. ISSASIP0201), the National Key Basic Research Support Foundation of China (No. G1999011810) and the KnowledgeInnovation Project in Resource and
文摘In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Province, China, with three methods: the soil profile statistics (SPS), GIS-based soil type (GST), and kriging interpolation (KI). The GST method, utilizing both pedological professional knowledge and GIS technology, was considered the most accurate method of the three estimations, with SOCD estimates for SPS 10% lower and KI 10% higher. The SOCD range for GST was 84% wider than KI as KI smoothing effect narrowed the SOCD range. Nevertheless, the coefficient of variation for SOCD with KI (41.7%) was less than GST and SPS. Comparing SOCD’s lower estimates for SPS versus GST, the major sources of uncertainty were the conflicting area of proportional relations. Meanwhile, the fewer number of soil profiles and the necessity of using the smoothing effect with KI were its sources of uncertainty. Moreover, for local detailed variations of SOCD, GST was more advantageous in reflecting the distribution pattern than KI.