To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,al...To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.展开更多
A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,wh...A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.展开更多
The smart grid has caught great attentions in recent years, which is poised to transform a centralized, producer-controlled network to a decentralized, consumer- interactive network that's supported by fine-grained m...The smart grid has caught great attentions in recent years, which is poised to transform a centralized, producer-controlled network to a decentralized, consumer- interactive network that's supported by fine-grained monitoring. Large-scale WSNs (Wireless Sensor Networks) have been considered one of the very promising technologies to support the implementation of smart grid. WSNs are applied in almost every aspect of smart grid, including power generation, power transmission, power distribution, power utilization and power dispatch, and the data query processing of 'WSNs in power grid' become an hotspot issue due to the amount of data of power grid is very large and the requirement of response time is very high. To meet the demands, top-k query processing is a good choice, which performs the cooperative query by aggregating the database objects' degree of match for each different query predicate and returning the best k matching objects. In this paper, a framework that can effectively apply top-k query to wireless sensor network in smart grid is proposed, which is based on the cluster-topology sensor network. In the new method, local indices are used to optimize the necessary query routing and process intermediate results inside the cluster to cut down the data traffic, and the hierarchical join query is executed based on the local results.Besides, top-k query results are verified by the clean-up process, and two schemes are taken to deal with the problem of node's dynamicity, which further reduce communication cost. Case studies and experimental results show that our algorithm has outperformed the current existing one with higher quality results and better efficiently.展开更多
Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guara...Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guarantees. Privacy- preserving multidimensional data publishing currently lacks a solid theoretical foundation. It is urgent to develop new techniques with provable privacy guarantees, e-Differential privacy is the only method that can provide such guarantees. In this paper, we propose a multidimensional data publishing scheme that ensures c-differential privacy while providing accurate results for query processing. The proposed solution applies nonstandard wavelet transforms on the raw multidimensional data and adds noise to guarantee c-differential privacy. Then, the scheme processes arbitrarily queries directly in the noisy wavelet- coefficient synopses of relational tables and expands the noisy wavelet coefficients back into noisy relational tuples until the end result of the query. Moreover, experimental results demonstrate the high accuracy and effectiveness of our approach.展开更多
The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer s...The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.展开更多
Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each ...Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each operator runs in separate thread or all operators combine in one query plan and run in a single thread.Both approaches suffer from severe drawbacks concerning the thread overhead and the stalls due to expensive operators.To overcome these drawbacks,a novel approach called clustered operators scheduling (COS) is proposed that adaptively clusters operators of the query plan into a number of groups based on their selectivity and computing cost using S-mean clustering.Experimental evaluation is provided to demonstrate the potential benefits of COS scheduling over the other scheduling strategies.COS can provide adaptive,flexible,reliable,scalable and robust design for continuous query processor.展开更多
Querying XML data is a computationally expensive process due to the complex nature of both the XML data and the XML queries. In this paper we propose an approach to expedite XML query processing by caching the results...Querying XML data is a computationally expensive process due to the complex nature of both the XML data and the XML queries. In this paper we propose an approach to expedite XML query processing by caching the results of frequent queries. We discover frequent query patterns from user-issued queries using an efficient bottom-up mining approach called VBUXMiner. VBUXMiner consists of two main steps. First, all queries are merged into a summary structure named "compressed global tree guide" (CGTG). Second, a bottom-up traversal scheme based on the CGTG is employed to generate frequent query patterns. We use the frequent query patterns in a cache mechanism to improve the XML query performance. Experimental results show that our proposed mining approach outperforms the previous mining algorithms for XML queries, such as XQPMinerTID and FastXMiner, and that by caching the results of frequent query patterns, XML query performance can be dramatically improved.展开更多
基金Weaponry Equipment Pre-Research Foundation of PLA Equipment Ministry (No. 9140A06050409JB8102)Pre-Research Foundation of PLA University of Science and Technology (No. 2009JSJ11)
文摘To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance.
基金The High Technology Research Plan of Jiangsu Prov-ince (No.BG2004034)the Foundation of Graduate Creative Program ofJiangsu Province (No.xm04-36).
文摘A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.
文摘The smart grid has caught great attentions in recent years, which is poised to transform a centralized, producer-controlled network to a decentralized, consumer- interactive network that's supported by fine-grained monitoring. Large-scale WSNs (Wireless Sensor Networks) have been considered one of the very promising technologies to support the implementation of smart grid. WSNs are applied in almost every aspect of smart grid, including power generation, power transmission, power distribution, power utilization and power dispatch, and the data query processing of 'WSNs in power grid' become an hotspot issue due to the amount of data of power grid is very large and the requirement of response time is very high. To meet the demands, top-k query processing is a good choice, which performs the cooperative query by aggregating the database objects' degree of match for each different query predicate and returning the best k matching objects. In this paper, a framework that can effectively apply top-k query to wireless sensor network in smart grid is proposed, which is based on the cluster-topology sensor network. In the new method, local indices are used to optimize the necessary query routing and process intermediate results inside the cluster to cut down the data traffic, and the hierarchical join query is executed based on the local results.Besides, top-k query results are verified by the clean-up process, and two schemes are taken to deal with the problem of node's dynamicity, which further reduce communication cost. Case studies and experimental results show that our algorithm has outperformed the current existing one with higher quality results and better efficiently.
基金the National Basic Research Program of China under Grant 2013CB338004,Doctoral Program of Higher Education of China under Grant No.20120073120034,National Natural Science Foundation of China under Grants No.61070204,61101108,and National S&T Major Program under Grant No.2011ZX03002-005-01
文摘Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guarantees. Privacy- preserving multidimensional data publishing currently lacks a solid theoretical foundation. It is urgent to develop new techniques with provable privacy guarantees, e-Differential privacy is the only method that can provide such guarantees. In this paper, we propose a multidimensional data publishing scheme that ensures c-differential privacy while providing accurate results for query processing. The proposed solution applies nonstandard wavelet transforms on the raw multidimensional data and adds noise to guarantee c-differential privacy. Then, the scheme processes arbitrarily queries directly in the noisy wavelet- coefficient synopses of relational tables and expands the noisy wavelet coefficients back into noisy relational tuples until the end result of the query. Moreover, experimental results demonstrate the high accuracy and effectiveness of our approach.
文摘The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each operator runs in separate thread or all operators combine in one query plan and run in a single thread.Both approaches suffer from severe drawbacks concerning the thread overhead and the stalls due to expensive operators.To overcome these drawbacks,a novel approach called clustered operators scheduling (COS) is proposed that adaptively clusters operators of the query plan into a number of groups based on their selectivity and computing cost using S-mean clustering.Experimental evaluation is provided to demonstrate the potential benefits of COS scheduling over the other scheduling strategies.COS can provide adaptive,flexible,reliable,scalable and robust design for continuous query processor.
基金the National Natural Science Foundation of China (No. 60603044)the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAH02A03)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0652)
文摘Querying XML data is a computationally expensive process due to the complex nature of both the XML data and the XML queries. In this paper we propose an approach to expedite XML query processing by caching the results of frequent queries. We discover frequent query patterns from user-issued queries using an efficient bottom-up mining approach called VBUXMiner. VBUXMiner consists of two main steps. First, all queries are merged into a summary structure named "compressed global tree guide" (CGTG). Second, a bottom-up traversal scheme based on the CGTG is employed to generate frequent query patterns. We use the frequent query patterns in a cache mechanism to improve the XML query performance. Experimental results show that our proposed mining approach outperforms the previous mining algorithms for XML queries, such as XQPMinerTID and FastXMiner, and that by caching the results of frequent query patterns, XML query performance can be dramatically improved.