期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别
1
作者 袁平平 满镇 +1 位作者 赵周杰 任伟新 《振动与冲击》 EI CSCD 北大核心 2024年第20期18-25,共8页
为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode d... 为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode decomposition,DDAVNCMD)的方法。通过模态能量占比确定响应信号的模态个数,同时采用导数归一化算法初步估算模态分量的初始频率,并添加迭代时变滤波器来降低噪声的影响,在此基础上再对响应信号进行VNCMD。通过单分量和多分量解析信号及拉索结构试验对所提方法进行验证。研究结果表明,基于DDAVNCMD的瞬时频率识别方法具有较好的准确性和抗噪性。 展开更多
关键词 瞬时频率 变分非线性chirp模态分解(VNCMD) 导数归一化 迭代时变滤波器 数据驱动自适应变分非线性chirp模态分解(DDAVNCMD)
下载PDF
基于时间序列组合模型的电力负荷预测 被引量:4
2
作者 徐帅 刘丹丹 《电子设计工程》 2023年第23期1-6,共6页
针对传统电力负荷数据非稳定、非线性的特性导致预测精度不高的问题,提出一种基于数据模态分解与CNN-BiLSTM相结合的负荷预测模型。利用自适应噪声完备集合经验模态分解算法(CEEMDAN)对原时间序列负荷数据进行分解,分解成多个稳定的本... 针对传统电力负荷数据非稳定、非线性的特性导致预测精度不高的问题,提出一种基于数据模态分解与CNN-BiLSTM相结合的负荷预测模型。利用自适应噪声完备集合经验模态分解算法(CEEMDAN)对原时间序列负荷数据进行分解,分解成多个稳定的本征模态函数分量(IMF)和残差(Res);对各分量使用卷积神经网络和双向长短期记忆网络组合模型逐一预测。对预测效果评估指标较差的分量继续采用变分模态分解(VMD)算法进行分解,再次预测从而提高模型的整体预测精度。经过实验验证表明,该组合模型与其他模型相比,有效提高了拟合优度,降低了预测误差。 展开更多
关键词 电力负荷预测 时间序列 数据模态分解 卷积神经网络 双向长短期记忆网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部