期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
研究院所的效率评估与实证研究 被引量:3
1
作者 孙明高 吴育华 陈士俊 《科学学与科学技术管理》 CSSCI 北大核心 2004年第7期61-63,共3页
在对效率基本概念分析的基础上,提出了一套使用DEA方法的研究院所效率评价指标体系。并采用CCR和BCC模型对天津市11家研究院所进行了实证评价,给出了相应的评价结果和改进方法。
关键词 研究院所 效率评估 评价指标 DEA 数据网络分析法 投入-产出模型
下载PDF
A weighted selection combining scheme for cooperative spectrum prediction in cognitive radio networks
2
作者 Li Xi Song Tiecheng +2 位作者 Zhang Yueyue Chen Guojun Hu Jing 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期281-287,共7页
A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-base... A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks. 展开更多
关键词 cognitive radio network cooperative spectrumprediction genetic algorithm-based neural network iterativeself-organizing data analysis algorithm weighted selectioncombining
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部