期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
数据库群集中间件c-jdbc在网上拍卖系统中的应用
1
作者 张勇斌 王庆波 《计算机系统应用》 2006年第3期29-31,共3页
针对网上拍卖系统中存在的数据库访问瓶颈和数据库失败带来的系统不能正常运行问题,介绍如何采用数据库群集中间件c-idbc提高数据库的可访问性和系统的伸缩性。介绍了c-idbc的主要组成模块。以及它的配置和使用方法。
关键词 数据群集 c—jdbc
下载PDF
基于数据库群集中间件C2JDBC的数据采集应用
2
作者 王庆波 张勇斌 《经济技术协作信息》 2007年第20期66-66,128,共2页
为解决钢铁生产企业从PLC设备采集数据的应用过程中,由于后台数据库失败带来的采集数据丢失的问题,介绍一种基于数据库群集中间件C2JDBC来提高数据库的可访问性、高可靠性和可伸缩性的方法。介绍C2JDBC的主要组成模块,以及它的配置... 为解决钢铁生产企业从PLC设备采集数据的应用过程中,由于后台数据库失败带来的采集数据丢失的问题,介绍一种基于数据库群集中间件C2JDBC来提高数据库的可访问性、高可靠性和可伸缩性的方法。介绍C2JDBC的主要组成模块,以及它的配置和使用方法。 展开更多
关键词 数据采集 数据群集 C2JDBC
下载PDF
基于虚拟服务器的实时数据库群集方案探讨 被引量:2
3
作者 刘冰 《电脑知识与技术》 2009年第6X期4998-5000,共3页
详述MSCS群集服务的概念,分析虚拟系统的特点,介绍InfoPlus.21实时数据库在流程行业信息化建设中的地位和作用,深入探讨了如何融合群集技术与虚拟系统两者的优势,实现InfoPlus.21实时数据库系统群集的方法,为优化系统整体性能、提高可... 详述MSCS群集服务的概念,分析虚拟系统的特点,介绍InfoPlus.21实时数据库在流程行业信息化建设中的地位和作用,深入探讨了如何融合群集技术与虚拟系统两者的优势,实现InfoPlus.21实时数据库系统群集的方法,为优化系统整体性能、提高可靠性及快速响应能力、进而实现企业以较低成本构建实时数据库服务器群集提供了可操作性的技术方案。 展开更多
关键词 群集技术 虚拟系统 InfoPlus.21实时数据群集
下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:1
4
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
下载PDF
SQL SERVER数据库自动备份与还原方法 被引量:3
5
作者 李光辉 《电子技术与软件工程》 2020年第6期208-209,共2页
本文介绍了一种简单实用的SQL Server数据库自动备份与还原方法,该方法基于批处理和T-SQL语句,主要分为备份主数据库、复制备份文件和还原备份数据库三个部分,最后总结了应用该方法时系统运维中的几个要点。该方法易部署、易使用、易维... 本文介绍了一种简单实用的SQL Server数据库自动备份与还原方法,该方法基于批处理和T-SQL语句,主要分为备份主数据库、复制备份文件和还原备份数据库三个部分,最后总结了应用该方法时系统运维中的几个要点。该方法易部署、易使用、易维护。已经应用在我台的两套播出系统中,取得了良好的运行效果。 展开更多
关键词 SQL Server 数据群集 备份还原 批处理
下载PDF
基于GMDH的地震液化场地侧向变形预测模型 被引量:7
6
作者 段伟 蔡国军 +4 位作者 袁俊 刘松玉 董晓强 陈瑞锋 刘薛宁 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第2期306-311,共6页
基于GMDH神经网络,建立了地震液化场地侧向变形的预测模型,并将其结果与传统反向传播BP、遗传算法优化BP、径向基函数RBF等神经网络的预测结果进行比较.结果表明,缓坡和临空面场地中,所提模型在训练样本集的拟合相关系数分别为96.43%和9... 基于GMDH神经网络,建立了地震液化场地侧向变形的预测模型,并将其结果与传统反向传播BP、遗传算法优化BP、径向基函数RBF等神经网络的预测结果进行比较.结果表明,缓坡和临空面场地中,所提模型在训练样本集的拟合相关系数分别为96.43%和93.82%,模型准确度较高.对于缓坡场地,倾斜率、液化土层厚度与侧向变形成正相关关系,震中距、平均细粒质量分数则与其成负相关关系;对于临空面场地,高度与距离长度之比、液化土层厚度与侧向变形成正相关关系,平均细粒质量分数、平均粒径与其成负相关关系.通过实际工程应用发现,所提模型的预测结果与经典的Youd简化模型结果吻合较好,由此证明了其可靠性,可在高烈度地震区工程建设中应用与推广. 展开更多
关键词 液化 侧向变形 数据处理群集方法 孔压静力触探 敏感性分析
下载PDF
IBM DB2 V8.1 for Linux
7
《开放系统世界》 2003年第12期21-21,共1页
关键词 数据 数据群集 数据查询 LINUX IBM DB2 V8.1
下载PDF
GMDH神经网络在电主轴热位移建模中的应用 被引量:3
8
作者 万正海 李锻能 潘岳健 《组合机床与自动化加工技术》 北大核心 2019年第6期9-11,16,共4页
针对机床电主轴在高速运转时内部发热造成的热误差问题,对比BP、RBF神经网络方法,采用一种基于GMDH神经网络的电主轴热误差建模方法。以某型号高速数控机床电主轴为研究对象进行热误差实验,通过利用温度传感器和电涡流位移传感器分别采... 针对机床电主轴在高速运转时内部发热造成的热误差问题,对比BP、RBF神经网络方法,采用一种基于GMDH神经网络的电主轴热误差建模方法。以某型号高速数控机床电主轴为研究对象进行热误差实验,通过利用温度传感器和电涡流位移传感器分别采集主轴温度和轴向热位移数据,运用数据处理群集方法(GMDH)建立主轴轴向热误差预测模型。经过数据对比表明:该方法较传统的神经网络方法具有学习速度快、获得全局最优解、泛化性能好、拟合预测精度高等优点。 展开更多
关键词 数据处理群集方法(GMDH) 电主轴 热误差建模 轴向热位移
下载PDF
Automatic relational database compression scheme design based on swarm evolution 被引量:1
9
作者 HU Tian-lei CHEN Gang +1 位作者 LI Xiao-yan DONG Jin-xiang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1642-1651,共10页
Compression is an intuitive way to boost the performance of a database system. However, compared with other physical database design techniques, compression consumes large amount of CPU power. There is a trade-off bet... Compression is an intuitive way to boost the performance of a database system. However, compared with other physical database design techniques, compression consumes large amount of CPU power. There is a trade-off between the re- duction of disk access and the overhead of CPU processing. Automatic design and adaptive administration of database systems are widely demanded, and the automatic selection of compression schema to compromise the trade-off is very important. In this paper, we present a model with novel techniques to integrate a rapidly convergent agent-based evolution framework, i.e. the SWAF (SWarm Algorithm Framework), into adaptive attribute compression for relational database. The model evolutionally consults statistics of CPU load and IO bandwidth to select compression schemas considering both aspects of the trade-off. We have im- plemented a prototype model on Oscar RDBMS with experiments highlighting the correctness and efficiency of our techniques. 展开更多
关键词 Database compression Automatic physical database design Swarm evolution
下载PDF
CLUSTERING VALIDITY BASED ON THE IMPROVED S_DBW INDEX 被引量:1
10
作者 Tong Jianhua Tan Hongzhou 《Journal of Electronics(China)》 2009年第2期258-264,共7页
For many clustering algorithms,it is very important to determine an appropriate number of clusters,which is called cluster validity problem.In this paper,a new clustering validity assessment index is proposed based on... For many clustering algorithms,it is very important to determine an appropriate number of clusters,which is called cluster validity problem.In this paper,a new clustering validity assessment index is proposed based on a novel method to select the margin point between two clusters for in-ter-cluster similarity more accurately,and provides an improved scatter function for intra-cluster similarity.Simulation results show the effectiveness of the proposed index on the data sets under consideration regardless of the choice of a clustering algorithm. 展开更多
关键词 Clustering validity Inter-cluster similarity Intra-cluster similarity
下载PDF
Frequent item sets mining from high-dimensional dataset based on a novel binary particle swarm optimization 被引量:2
11
作者 张中杰 黄健 卫莹 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1700-1708,共9页
A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic... A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE. 展开更多
关键词 data mining frequent item sets particle swarm optimization
下载PDF
The Influence of Carrier Phase Error on the Performances of Digital Image m-QAM Transmission System
12
作者 YI Qing-ming WU Wen-si +1 位作者 GUO Jiang-ling HUANG Yuan 《Semiconductor Photonics and Technology》 CAS 2000年第2期105-111,共7页
The effect of carrier phase error in digital image transmission system is discussed. Code error rate and SNR with carrier phase error in Gauss white noise channel are calculated, and the transmission system is simulat... The effect of carrier phase error in digital image transmission system is discussed. Code error rate and SNR with carrier phase error in Gauss white noise channel are calculated, and the transmission system is simulated on computer. 展开更多
关键词 M-QAM CONSTELLATION Carrier phase error Code error rate
下载PDF
Clustering Categorical Data:A Cluster Ensemble Approach
13
作者 何增友 Xu +2 位作者 Xiaofei Deng Shengchun 《High Technology Letters》 EI CAS 2003年第4期8-12,共5页
Clustering categorical data, an integral part of data mining,has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from th... Clustering categorical data, an integral part of data mining,has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from the viewpoint of cluster ensemble, and apply cluster ensemble approach for clustering categorical data. Experimental results on real datasets show that better clustering accuracy can be obtained by comparing with existing categorical data clustering algorithms. 展开更多
关键词 CLUSTERING categorical data cluster ensemble data mining
下载PDF
Clustering: from Clusters to Knowledge
14
作者 Peter Grabusts 《Computer Technology and Application》 2013年第6期284-290,共7页
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities... Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes. 展开更多
关键词 Data analysis clustering algorithms K-MEANS fuzzy C-means rule extraction.
下载PDF
CLUSTER-BASED REGULARIZED SLICED INVERSE REGRESSION FOR FORECASTING MACROECONOMIC VARIABLES 被引量:1
15
作者 YU Yue CHEN Zhihong YANG Jie 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期75-91,共17页
This paper concerns the dimension reduction in regression for large data set. The authors introduce a new method based on the sliced inverse regression approach, cMled cluster-based regularized sliced inverse regressi... This paper concerns the dimension reduction in regression for large data set. The authors introduce a new method based on the sliced inverse regression approach, cMled cluster-based regularized sliced inverse regression. The proposed method not only keeps the merit of considering both response and predictors' information, but also enhances the capability of handling highly correlated variables. It is justified under certain linearity conditions. An empirical application on a macroeconomic data set shows that the proposed method has outperformed the dynamic factor model and other shrinkage methods. 展开更多
关键词 Cluster-based FORECAST MACROECONOMICS sliced inverse regression.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部