To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are ...To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are designed by mapping the output of standard support vector machines into a calibrated posterior probability by using a learned sigmoid function and then combining these learned binary-class probability SVMs. Two Bayes based methods for combining multiple MPSVMs are applied to improve the performance of classification. Our proposed methods are applied to fault diagnosis of a diesel engine. The experimental results show that the new methods can improve the accuracy and robustness of fault diagnosis.展开更多
基金This work was supported by the National Key Fundamental Research Project of China (2002cb312200) ,the National High TechnologyResearch and Development Program of China (2002AA412010) , and in part supported by the Natural Science Foundation of China(60575036)
文摘To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are designed by mapping the output of standard support vector machines into a calibrated posterior probability by using a learned sigmoid function and then combining these learned binary-class probability SVMs. Two Bayes based methods for combining multiple MPSVMs are applied to improve the performance of classification. Our proposed methods are applied to fault diagnosis of a diesel engine. The experimental results show that the new methods can improve the accuracy and robustness of fault diagnosis.