期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
符号数据的无监督学习:一种空间变换方法
被引量:
2
1
作者
王建新
钱宇华
《计算机科学》
CSCD
北大核心
2016年第1期89-93,121,共6页
近年来符号数据的无监督学习在模式识别、机器学习、数据挖掘和知识发现等诸多领域扮演着越来越重要的角色。然而现有的针对符号数据的聚类算法(经典的K-modes系列算法等),相比数值型数据的聚类算法,在性能方面仍然有很大的提升空间。...
近年来符号数据的无监督学习在模式识别、机器学习、数据挖掘和知识发现等诸多领域扮演着越来越重要的角色。然而现有的针对符号数据的聚类算法(经典的K-modes系列算法等),相比数值型数据的聚类算法,在性能方面仍然有很大的提升空间。其根本原因在于符号数据缺乏类似数值数据那样清晰的空间结构。为了能够有效地发掘符号数据内在的空间结构,采用了一种全新的数据表示方案:空间变换方法。该方法将符号数据映射到相应的由原来的属性组成的新的维度的欧氏空间中。在这一框架的基础上,为了找到符号数据更有代表性的模式,结合CarreiraPerpin提出的K-modes算法进行无监督学习。在9个常用的UCI符号数据集上进行了测试,与传统的符号数据聚类算法进行了实验比较,结果表明几乎在所有的数据集上提出的方法都是更加有效的。
展开更多
关键词
符号
数据
数据表示方案
空间变换
下载PDF
职称材料
题名
符号数据的无监督学习:一种空间变换方法
被引量:
2
1
作者
王建新
钱宇华
机构
山西大学计算机与信息技术学院
计算智能与中文信息处理教育部重点实验室
山西大学智能信息处理研究所
出处
《计算机科学》
CSCD
北大核心
2016年第1期89-93,121,共6页
基金
国家优秀青年基金项目(61322211)
教育部新世纪人才支持计划(NCET-12-1031)
+1 种基金
教育部博士点专项科研基金项目(20121401110013)
山西省青年学术带头人(20120301)资助
文摘
近年来符号数据的无监督学习在模式识别、机器学习、数据挖掘和知识发现等诸多领域扮演着越来越重要的角色。然而现有的针对符号数据的聚类算法(经典的K-modes系列算法等),相比数值型数据的聚类算法,在性能方面仍然有很大的提升空间。其根本原因在于符号数据缺乏类似数值数据那样清晰的空间结构。为了能够有效地发掘符号数据内在的空间结构,采用了一种全新的数据表示方案:空间变换方法。该方法将符号数据映射到相应的由原来的属性组成的新的维度的欧氏空间中。在这一框架的基础上,为了找到符号数据更有代表性的模式,结合CarreiraPerpin提出的K-modes算法进行无监督学习。在9个常用的UCI符号数据集上进行了测试,与传统的符号数据聚类算法进行了实验比较,结果表明几乎在所有的数据集上提出的方法都是更加有效的。
关键词
符号
数据
数据表示方案
空间变换
Keywords
Categorical data
Data representation scheme
Space transformation
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
符号数据的无监督学习:一种空间变换方法
王建新
钱宇华
《计算机科学》
CSCD
北大核心
2016
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部