随着网络规模的扩大和链路速度的提高,实时采集每条流的流量变得非常困难.Estan等人提出采集大象流的设想,并提出了识别大象流的算法:Sample and Hold算法和Multistage算法.但这两种算法在实现时存在:Sample and Hold算法随机丢弃报文...随着网络规模的扩大和链路速度的提高,实时采集每条流的流量变得非常困难.Estan等人提出采集大象流的设想,并提出了识别大象流的算法:Sample and Hold算法和Multistage算法.但这两种算法在实现时存在:Sample and Hold算法随机丢弃报文,带来采集数据不准确的问题;Multistage算法需要同时进行5~6次访存,无法使用硬件实现的问题.针对上述问题,提出了两种大象流识别算法:Hits和Holds算法.理论和实验结果表明,Hits和Holds算法对网络大象流的误检率和漏检率均优于Sample and Hold及Multistage算法.展开更多
基金Projects(52074085,U21A20117,U21A20475)supported by the National Natural Science Foundation of ChinaProject(N2004010)supported by the Fundamental Research Funds for the Central Universities,China。
文摘随着网络规模的扩大和链路速度的提高,实时采集每条流的流量变得非常困难.Estan等人提出采集大象流的设想,并提出了识别大象流的算法:Sample and Hold算法和Multistage算法.但这两种算法在实现时存在:Sample and Hold算法随机丢弃报文,带来采集数据不准确的问题;Multistage算法需要同时进行5~6次访存,无法使用硬件实现的问题.针对上述问题,提出了两种大象流识别算法:Hits和Holds算法.理论和实验结果表明,Hits和Holds算法对网络大象流的误检率和漏检率均优于Sample and Hold及Multistage算法.