In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wirele...In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wireless environment is proposed.This method can estimate the relational degree between the actual face of an UAV data link in an interface environment and the simulation scenarios in an anechoic chamber by using the Grey Relational Analysis(GRA) theory.The dynamic drive of the microwave instrument produces a real-time corresponding interference signal and realises scene mapping.The experimental results show that the maximal correlation between the interference signal in the real scene and the angular domain of the radiation antenna in the anechoic chamber is 0.959 3.Further,the relational degree of the Signal-toInterference Ratio(SIR) of the UAV at its reception terminal indoors and in the anechoic chamber is 0.996 8,and the time of instrument drive is only approximately 10 μs.All of the above illustrates that this method can achieve a simulation close to a real field dynamic electromagnetic interference signal of an indoor UAV data link.展开更多
To improve the detection accuracy of the balise uplink signal transmitted in a strong noise environment,we use chaotic oscillator to detect the balise uplink signal based on the characteristics of the chaotic system t...To improve the detection accuracy of the balise uplink signal transmitted in a strong noise environment,we use chaotic oscillator to detect the balise uplink signal based on the characteristics of the chaotic system that is sensitive to initial conditions and immune to noise.Combining with the principle of Duffing oscillator system used in weak signal detection and uplink signal feature,the methods and steps of using Duffing oscillator to detect the balise signal are presented.Furthermore,the Lyapunov exponent algorithm is used to calculate the critical threshold of the Duffing oscillator detection system.Thus,the output states of the system can be quantitatively judged to achieve demodulation of the balise signal.The simulation results show that the chaotic oscillator detection method for balise signal based on Lyapunov exponent algorithm not only improves the accuracy and efficiency of threshold setting,but also ensures the reliability of balise signal detection.展开更多
基金supported by a certain Ministry Foundation under Grant No.20212HK03010
文摘In order to test the anti-interference ability of an Unmanned Aerial Vehicle(UAV) data link in a complex electromagnetic environment,a method for simulating the dynamic electromagnetic interference of an indoor wireless environment is proposed.This method can estimate the relational degree between the actual face of an UAV data link in an interface environment and the simulation scenarios in an anechoic chamber by using the Grey Relational Analysis(GRA) theory.The dynamic drive of the microwave instrument produces a real-time corresponding interference signal and realises scene mapping.The experimental results show that the maximal correlation between the interference signal in the real scene and the angular domain of the radiation antenna in the anechoic chamber is 0.959 3.Further,the relational degree of the Signal-toInterference Ratio(SIR) of the UAV at its reception terminal indoors and in the anechoic chamber is 0.996 8,and the time of instrument drive is only approximately 10 μs.All of the above illustrates that this method can achieve a simulation close to a real field dynamic electromagnetic interference signal of an indoor UAV data link.
基金National Natural Science Foundation of China(No.61763025)。
文摘To improve the detection accuracy of the balise uplink signal transmitted in a strong noise environment,we use chaotic oscillator to detect the balise uplink signal based on the characteristics of the chaotic system that is sensitive to initial conditions and immune to noise.Combining with the principle of Duffing oscillator system used in weak signal detection and uplink signal feature,the methods and steps of using Duffing oscillator to detect the balise signal are presented.Furthermore,the Lyapunov exponent algorithm is used to calculate the critical threshold of the Duffing oscillator detection system.Thus,the output states of the system can be quantitatively judged to achieve demodulation of the balise signal.The simulation results show that the chaotic oscillator detection method for balise signal based on Lyapunov exponent algorithm not only improves the accuracy and efficiency of threshold setting,but also ensures the reliability of balise signal detection.