Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual int...Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual interests and public interests.The implementation of the Healthy China Initiative greatly benefits from its practical significance.In practice,data from medical institutions takes varied forms,including personally identifiable data collected before diagnosis and treatment,clinical medical data generated during diagnosis and treatment,medical data collected in public health management,and potential medical data generated in daily life.In the new journey of comprehensively promoting the Chinese path to modernization,it is necessary to clarify the shift from an individual-oriented to a societal-oriented value system,highlighting the reinforcing role of the trust concept.Guided by the principle of minimizing data utilization,the focus is on the new developments and changes in medical institution data in the postpandemic era.This involves a series of measures such as fulfilling the obligation of notification and consent,specifying the scope of data collection and usage,strengthening the standardized use of relevant technical measures,and establishing a sound legal responsibility system for data compliance.Through these measures,a flexible and efficient medical institution data compliance system can be constructed.展开更多
Privacy protection for big data linking is discussed here in relation to the Central Statistics Office (CSO), Ireland's, big data linking project titled the 'Structure of Earnings Survey - Administrative Data Proj...Privacy protection for big data linking is discussed here in relation to the Central Statistics Office (CSO), Ireland's, big data linking project titled the 'Structure of Earnings Survey - Administrative Data Project' (SESADP). The result of the project was the creation of datasets and statistical outputs for the years 2011 to 2014 to meet Eurostat's annual earnings statistics requirements and the Structure of Earnings Survey (SES) Regulation. Record linking across the Census and various public sector datasets enabled the necessary information to be acquired to meet the Eurostat earnings requirements. However, the risk of statistical disclosure (i.e. identifying an individual on the dataset) is high unless privacy and confidentiality safe-guards are built into the data matching process. This paper looks at the three methods of linking records on big datasets employed on the SESADP, and how to anonymise the data to protect the identity of the individuals, where potentially disclosive variables exist.展开更多
文摘Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual interests and public interests.The implementation of the Healthy China Initiative greatly benefits from its practical significance.In practice,data from medical institutions takes varied forms,including personally identifiable data collected before diagnosis and treatment,clinical medical data generated during diagnosis and treatment,medical data collected in public health management,and potential medical data generated in daily life.In the new journey of comprehensively promoting the Chinese path to modernization,it is necessary to clarify the shift from an individual-oriented to a societal-oriented value system,highlighting the reinforcing role of the trust concept.Guided by the principle of minimizing data utilization,the focus is on the new developments and changes in medical institution data in the postpandemic era.This involves a series of measures such as fulfilling the obligation of notification and consent,specifying the scope of data collection and usage,strengthening the standardized use of relevant technical measures,and establishing a sound legal responsibility system for data compliance.Through these measures,a flexible and efficient medical institution data compliance system can be constructed.
文摘Privacy protection for big data linking is discussed here in relation to the Central Statistics Office (CSO), Ireland's, big data linking project titled the 'Structure of Earnings Survey - Administrative Data Project' (SESADP). The result of the project was the creation of datasets and statistical outputs for the years 2011 to 2014 to meet Eurostat's annual earnings statistics requirements and the Structure of Earnings Survey (SES) Regulation. Record linking across the Census and various public sector datasets enabled the necessary information to be acquired to meet the Eurostat earnings requirements. However, the risk of statistical disclosure (i.e. identifying an individual on the dataset) is high unless privacy and confidentiality safe-guards are built into the data matching process. This paper looks at the three methods of linking records on big datasets employed on the SESADP, and how to anonymise the data to protect the identity of the individuals, where potentially disclosive variables exist.