采用开放式网格服务体系结构-数据访问与集成(OGSA-DAI)中间件的数据访问模式,利用空间数据引擎的空间数据管理能力,构建分布式的多源网格数据服务(GDS).基于WKT(Well Known Text)中间数据模型,构建一个空间数据查询和访问的统一模式,...采用开放式网格服务体系结构-数据访问与集成(OGSA-DAI)中间件的数据访问模式,利用空间数据引擎的空间数据管理能力,构建分布式的多源网格数据服务(GDS).基于WKT(Well Known Text)中间数据模型,构建一个空间数据查询和访问的统一模式,并将结果集转换为通用的空间数据格式.实例表明,通过WKT中间数据模型,可实现自定义查询或跨数据服务资源的联合查询,查询结果可以方便地转换为XML,SVG,GML文档.展开更多
Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic infe...Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.展开更多
Currently,ocean data portals are being developed around the world based on Geographic Information Systems(GIS) as a source of ocean data and information.However,given the relatively high temporal frequency and the int...Currently,ocean data portals are being developed around the world based on Geographic Information Systems(GIS) as a source of ocean data and information.However,given the relatively high temporal frequency and the intrinsic spatial nature of ocean data and information,no current GIS software is adequate to deal effectively and efficiently with spatiotemporal data.Furthermore,while existing ocean data portals are generally designed to meet the basic needs of a broad range of users,they are sometimes very complicated for general audiences,especially for those without training in GIS.In this paper,a new technical architecture for an ocean data integration and service system is put forward that consists of four layers:the operation layer,the extract,transform,and load(ETL) layer,the data warehouse layer,and the presentation layer.The integration technology based on the XML,ontology,and spatiotemporal data organization scheme for the data warehouse layer is then discussed.In addition,the ocean observing data service technology realized in the presentation layer is also discussed in detail,including the development of the web portal and ocean data sharing platform.The application on the Taiwan Strait shows that the technology studied in this paper can facilitate sharing,access,and use of ocean observation data.The paper is based on an ongoing research project for the development of an ocean observing information system for the Taiwan Strait that will facilitate the prevention of ocean disasters.展开更多
In this paper we propose a service-oriented architecture for spatial data integration (SOA-SDI) in the context of a large number of available spatial data sources that are physically sitting at different places, and d...In this paper we propose a service-oriented architecture for spatial data integration (SOA-SDI) in the context of a large number of available spatial data sources that are physically sitting at different places, and develop web-based GIS systems based on SOA-SDI, allowing client applications to pull in, analyze and present spatial data from those available spatial data sources. The proposed architecture logically includes 4 layers or components; they are layer of multiple data provider services, layer of data in-tegration, layer of backend services, and front-end graphical user interface (GUI) for spatial data presentation. On the basis of the 4-layered SOA-SDI framework, WebGIS applications can be quickly deployed, which proves that SOA-SDI has the potential to reduce the input of software development and shorten the development period.展开更多
文摘采用开放式网格服务体系结构-数据访问与集成(OGSA-DAI)中间件的数据访问模式,利用空间数据引擎的空间数据管理能力,构建分布式的多源网格数据服务(GDS).基于WKT(Well Known Text)中间数据模型,构建一个空间数据查询和访问的统一模式,并将结果集转换为通用的空间数据格式.实例表明,通过WKT中间数据模型,可实现自定义查询或跨数据服务资源的联合查询,查询结果可以方便地转换为XML,SVG,GML文档.
基金Supported by National Natural Science Foundation of China(No.61601039)financially supported by the State Key Research Development Program of China(Grant No.2016YFC0801407)+3 种基金financially supported by the Natural Science Foundation of Beijing Information Science & Technology University(No.1625008)financially supported by the Opening Project of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(NO.ICDD201607)Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(NO.SKLNST-2016-2-08)financially supported by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(Grant No.CIT&TCD201504056)
文摘Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.
基金Supported by National High Technology Research and Development Program of China (863 Program) (Nos. 2009AA12Z225,2009AA12Z208)the National Natural Science Foundation of China (No. 61074132)
文摘Currently,ocean data portals are being developed around the world based on Geographic Information Systems(GIS) as a source of ocean data and information.However,given the relatively high temporal frequency and the intrinsic spatial nature of ocean data and information,no current GIS software is adequate to deal effectively and efficiently with spatiotemporal data.Furthermore,while existing ocean data portals are generally designed to meet the basic needs of a broad range of users,they are sometimes very complicated for general audiences,especially for those without training in GIS.In this paper,a new technical architecture for an ocean data integration and service system is put forward that consists of four layers:the operation layer,the extract,transform,and load(ETL) layer,the data warehouse layer,and the presentation layer.The integration technology based on the XML,ontology,and spatiotemporal data organization scheme for the data warehouse layer is then discussed.In addition,the ocean observing data service technology realized in the presentation layer is also discussed in detail,including the development of the web portal and ocean data sharing platform.The application on the Taiwan Strait shows that the technology studied in this paper can facilitate sharing,access,and use of ocean observation data.The paper is based on an ongoing research project for the development of an ocean observing information system for the Taiwan Strait that will facilitate the prevention of ocean disasters.
基金Supported by the Research Fund of Key GIS Lab of the Education Ministry (No. 200610)
文摘In this paper we propose a service-oriented architecture for spatial data integration (SOA-SDI) in the context of a large number of available spatial data sources that are physically sitting at different places, and develop web-based GIS systems based on SOA-SDI, allowing client applications to pull in, analyze and present spatial data from those available spatial data sources. The proposed architecture logically includes 4 layers or components; they are layer of multiple data provider services, layer of data in-tegration, layer of backend services, and front-end graphical user interface (GUI) for spatial data presentation. On the basis of the 4-layered SOA-SDI framework, WebGIS applications can be quickly deployed, which proves that SOA-SDI has the potential to reduce the input of software development and shorten the development period.