针对交通数据采集应用,设计了一种符合一级激光安全等级的中短距离、高速、高精度脉冲激光扫描器(Laser Scanner)。为了解决激光扫描器的快速、高精度测距问题,提出了一种数字化全波形脉冲检波方法。该方法通过脉冲波形前沿拟合判定激...针对交通数据采集应用,设计了一种符合一级激光安全等级的中短距离、高速、高精度脉冲激光扫描器(Laser Scanner)。为了解决激光扫描器的快速、高精度测距问题,提出了一种数字化全波形脉冲检波方法。该方法通过脉冲波形前沿拟合判定激光脉冲的达到时刻,以模拟数字转换器(Analog to Digital Converter,ADC)的采样时钟作为计数器,对回波延时进行计算;再根据回波信号的强度对测距结果进行补偿修正,显著减小了测距幅相误差。扫描器的信号处理基于高速ADC和FPGA实现。测试结果显示,激光扫描器的测距频率达到50000点/s,单点测距精度为士4 cm,能够满足车型自动分类、交通流量调查和客流密度检测等系统的数据采集需求。展开更多
文摘针对交通数据采集应用,设计了一种符合一级激光安全等级的中短距离、高速、高精度脉冲激光扫描器(Laser Scanner)。为了解决激光扫描器的快速、高精度测距问题,提出了一种数字化全波形脉冲检波方法。该方法通过脉冲波形前沿拟合判定激光脉冲的达到时刻,以模拟数字转换器(Analog to Digital Converter,ADC)的采样时钟作为计数器,对回波延时进行计算;再根据回波信号的强度对测距结果进行补偿修正,显著减小了测距幅相误差。扫描器的信号处理基于高速ADC和FPGA实现。测试结果显示,激光扫描器的测距频率达到50000点/s,单点测距精度为士4 cm,能够满足车型自动分类、交通流量调查和客流密度检测等系统的数据采集需求。