Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. Multi...Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. MultiClose respectively computes the results in single dimension tables and merges the results with a very efficient approach. Close itemsets technique is used to improve the performance of the algorithm. The authors propose an efficient implementation for star schemas in which their al- gorithm outperforms state-of-the-art single-table algorithms.展开更多
A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic...A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.展开更多
A profound understanding of the costs to perform condition assessment on buried drinking water pipeline infrastructure is required for enhanced asset management. Toward this end, an automated and uniform method of col...A profound understanding of the costs to perform condition assessment on buried drinking water pipeline infrastructure is required for enhanced asset management. Toward this end, an automated and uniform method of collecting cost data can provide water utilities a means for viewing, understanding, interpreting and visualizing complex geographically referenced cost information to reveal data relationships, patterns and trends. However, there has been no standard data model that allows automated data collection and interoperability across platforms. The primary objective of this research is to develop a standard cost data model for drinking water pipeline condition assessment projects and to conflate disparate datasets from differing utilities. The capabilities of this model will be further demonstrated through performing trend analyses. Field mapping files will be generated from the standard data model and demonstrated in an interactive web map created using Google Maps API (application programming interface) for JavaScript that allows the user to toggle project examples and to perform regional comparisons. The aggregation of standardized data and further use in mapping applications will help in providing timely access to condition assessment cost information and resources that will lead to enhanced asset management and resource allocation for drinking water utilities.展开更多
文摘Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. MultiClose respectively computes the results in single dimension tables and merges the results with a very efficient approach. Close itemsets technique is used to improve the performance of the algorithm. The authors propose an efficient implementation for star schemas in which their al- gorithm outperforms state-of-the-art single-table algorithms.
文摘A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.
文摘A profound understanding of the costs to perform condition assessment on buried drinking water pipeline infrastructure is required for enhanced asset management. Toward this end, an automated and uniform method of collecting cost data can provide water utilities a means for viewing, understanding, interpreting and visualizing complex geographically referenced cost information to reveal data relationships, patterns and trends. However, there has been no standard data model that allows automated data collection and interoperability across platforms. The primary objective of this research is to develop a standard cost data model for drinking water pipeline condition assessment projects and to conflate disparate datasets from differing utilities. The capabilities of this model will be further demonstrated through performing trend analyses. Field mapping files will be generated from the standard data model and demonstrated in an interactive web map created using Google Maps API (application programming interface) for JavaScript that allows the user to toggle project examples and to perform regional comparisons. The aggregation of standardized data and further use in mapping applications will help in providing timely access to condition assessment cost information and resources that will lead to enhanced asset management and resource allocation for drinking water utilities.