期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
智慧煤矿数据驱动检测技术解析
1
作者 张帅 《中文科技期刊数据库(全文版)工程技术》 2021年第2期207-207,共1页
随着科学技术的发展,智慧煤矿的建设逐渐受到关注。在智慧煤矿发展的过程中,数据驱动检测是非常关键的技术,这种技术不需要明确智慧煤矿大数据系统的精确解析模型,就能够对未来对象系统的相关行为进行预测。本文通过对智慧煤矿驱动检测... 随着科学技术的发展,智慧煤矿的建设逐渐受到关注。在智慧煤矿发展的过程中,数据驱动检测是非常关键的技术,这种技术不需要明确智慧煤矿大数据系统的精确解析模型,就能够对未来对象系统的相关行为进行预测。本文通过对智慧煤矿驱动检测技术进行分析,明确其在煤矿中的应用现状,对智慧煤矿的发展有一定帮助。 展开更多
关键词 智慧煤矿 数据驱动检测 应用
下载PDF
A data-driven threshold for wavelet sliding window denoising in mechanical fault detection 被引量:9
2
作者 CHEN YiMin ZI YanYang +2 位作者 CAO HongRui HE ZhengJia SUN HaiLiang 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期589-597,共9页
Wavelet denoising is an effective approach to extract fault features from strong background noise.It has been widely used in mechanical fault detection and shown excellent performance.However,traditional thresholds ar... Wavelet denoising is an effective approach to extract fault features from strong background noise.It has been widely used in mechanical fault detection and shown excellent performance.However,traditional thresholds are not suitable for nonstationary signal denoising because they set universal thresholds for different wavelet coefficients.Therefore,a data-driven threshold strategy is proposed in this paper.First,the signal is decomposed into different subbands by wavelet transformation.Then a data-driven threshold is derived by estimating the noise power spectral density in different subbands.Since the data-driven threshold is dependent on the noise estimation and adapted to data,it is more robust and accurate for denoising than traditional thresholds.Meanwhile,sliding window method is adopted to set a flexible local threshold.When this method was applied to simulation signal and an inner race fault diagnostic case of dedusting fan bearing,the proposed method has good result and provides valuable advantages over traditional methods in the fault detection of rotating machines. 展开更多
关键词 wavelet denoising data-driven threshold noise estimation bearing fault diagnosis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部