随着数模转化器(DAC)位数的增加,模拟量的步进值越来越小,数字万用表的精度和负载电阻的热效应成为影响DAC线性度测量的重要因素。基于分段式电流舵DAC的结构,结合其二进制和温度计译码电路的特点,从理论上提出了一种使用简码测试线...随着数模转化器(DAC)位数的增加,模拟量的步进值越来越小,数字万用表的精度和负载电阻的热效应成为影响DAC线性度测量的重要因素。基于分段式电流舵DAC的结构,结合其二进制和温度计译码电路的特点,从理论上提出了一种使用简码测试线性度的方法,并以一款分段式10 bit DAC为例,分别采用简码和传统的全码方法验证了它的微分非线性DNL与积分非线性INL。结果表明,简码测试和全码测试得到的DNL与INL曲线趋势一致,但简码测试效率高,仅占全码测试周期的1/8;另外简码测试减小了负载电阻温漂引入的误差,因此相比全码测试线性度的性能提高了0.1-0.2 LSB。展开更多
The aim of this paper is to present the design and experimental validation process for a thermoacoustic looped-tube engine. The design procedure consists of numerical modelling of the system using DELTA EC tool, Desig...The aim of this paper is to present the design and experimental validation process for a thermoacoustic looped-tube engine. The design procedure consists of numerical modelling of the system using DELTA EC tool, Design Environment for Low-amplitude ThermoAcousfic Energy Conversion, in particular the effects of mean pressure and regenerator configuration on the pressure amplitude and acoustic power generated. This is followed by the construction of a practical engine system equipped with a ceramic regenerator - a substrate used in auto- motive catalytic converters with fine square channels. The preliminary testing results are obtained and compared with the simulations in detail.The measurement results agree very well on the qualitative level and are reasonably close in the quantitative sense.展开更多
文摘随着数模转化器(DAC)位数的增加,模拟量的步进值越来越小,数字万用表的精度和负载电阻的热效应成为影响DAC线性度测量的重要因素。基于分段式电流舵DAC的结构,结合其二进制和温度计译码电路的特点,从理论上提出了一种使用简码测试线性度的方法,并以一款分段式10 bit DAC为例,分别采用简码和传统的全码方法验证了它的微分非线性DNL与积分非线性INL。结果表明,简码测试和全码测试得到的DNL与INL曲线趋势一致,但简码测试效率高,仅占全码测试周期的1/8;另外简码测试减小了负载电阻温漂引入的误差,因此相比全码测试线性度的性能提高了0.1-0.2 LSB。
基金the University of Bahrain for sponsoring the PhD programme of the first authorEPSRC UK for supporting this research under grants GR/T04502/01 and GR/T04519/01
文摘The aim of this paper is to present the design and experimental validation process for a thermoacoustic looped-tube engine. The design procedure consists of numerical modelling of the system using DELTA EC tool, Design Environment for Low-amplitude ThermoAcousfic Energy Conversion, in particular the effects of mean pressure and regenerator configuration on the pressure amplitude and acoustic power generated. This is followed by the construction of a practical engine system equipped with a ceramic regenerator - a substrate used in auto- motive catalytic converters with fine square channels. The preliminary testing results are obtained and compared with the simulations in detail.The measurement results agree very well on the qualitative level and are reasonably close in the quantitative sense.