Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak re...Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak reflections. The Cauchy function, modified Cauchy function, and Huber function are commonly used constraint criteria in sparse deconvolution. We used numerical experiments to analyze the ability of sparsity constrained deconvolution to restore reflectivity sequences and protect weak reflections under different constraint criteria. The experimental results demonstrate that the performance of sparsity constrained deconvolution depends on the agreement between the constraint criteria and the probability distribution of the reflectivity sequences; furthermore, the modified Cauchy- constrained criterion protects the weak reflections better than the other criteria. Based on the model experiments, the probability distribution of the reflectivity sequences of carbonate and clastic formations is statistically analyzed by using well-logging data and then the modified Cauchy-constrained deconvolution is applied to real seismic data much improving the resolution.展开更多
Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the...Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.展开更多
The stretching and folding of fluid element during chaotic mixing field is studied using numerical method. The chaotic mixing process is caused by periodic secondary flow in a twisted curved pipe. Using the nonlinea...The stretching and folding of fluid element during chaotic mixing field is studied using numerical method. The chaotic mixing process is caused by periodic secondary flow in a twisted curved pipe. Using the nonlinear discrete velocity field as the dynamical system, the present study connects the fluid particle's stretching along its trajectory in one period to a linearized time-varying variational equation. After numerical approximation of the variational equation, fluid stretching is calculated on the whole cross section. The stretching distribution shows an exponential fluid stretching and folding, which indicates an excellent mixing performance.展开更多
This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusi...This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.展开更多
A linear mixed model is used to determine the explaining infant mortality rate data of United Nations countries. The HDI (human development index) has a significant negative linear relationship with infant mortality...A linear mixed model is used to determine the explaining infant mortality rate data of United Nations countries. The HDI (human development index) has a significant negative linear relationship with infant mortality rate. United Nations data shows that the infant mortality rate has a descending trend over the period 1990-2010. This study aims to assess the value of the HDI as a predictor of infant mortality rate. Findings in the paper suggest that significant percentage reductions in infant mortality might be possible for countries for controlling the HDI.展开更多
The paper presents the research for the purpose of selecting microorganisms into the production process of "chao" to improve the quality of "chao" products and ensure food safety. Several analytical methods such a...The paper presents the research for the purpose of selecting microorganisms into the production process of "chao" to improve the quality of "chao" products and ensure food safety. Several analytical methods such as determination of formal nitrogen, determination of the protease hydrolysis activity, sensory evaluation method, experimental procedure, methods of analysis and processing of empirical data were used in this study. The findings showed that two out of four selected microorganism strains (one strain of fungi and three strains of bacteria denoted NM1, VK1, VK2, VK3, respectively) were the most appropriate for the cooperation among them and the production of %hao", which were coded NM1 and VK1. The suitable mixing proportion of strains of NM1 and VK1 was determined at 1:1.25, compatible with the 1:100 ratio of the varieties of microorganisms (in powder form) to tofu.展开更多
A numerical method using AUSMDV scheme and k-ω SST turbulence model with an explicit compressibility correction was developed,and a 3-D numerical simulation of a supersonic flow field with a vertical sonic jet of hyd...A numerical method using AUSMDV scheme and k-ω SST turbulence model with an explicit compressibility correction was developed,and a 3-D numerical simulation of a supersonic flow field with a vertical sonic jet of hydrogen was performed.Good agreement between numerical results and experimental data validated the reliability of the numerical method.Whereafter,two parameters,mass-weighted average total pressure and mixing efficiency,were defined to evaluate the mixing performance of different injection schemes.Based on the numerical method and evaluation criterion,the mixing characteristics of different injection schemes were studied in detail.It was found that for the mixing field of supersonic transverse jet,the near-field mixing is controlled by convection transport while the far-field mixing is controlled by mass diffusion;the circular-hole injection causes a loss of total pressure comparable to the slot injection,but can induce a much higher mixing efficiency because of its 3-D flow characteristic;the variation of injection angle under circular-hole injection mainly affects the near-field mixing degree,and among the five injection angles studied in the present paper,angle 120° is the optimal one;with the increase of the ratio between injector space and diameter,the induced mixing efficiency increases while the caused loss of total pressure can grow greatly;the two-stage injection method designed through reducing the injector area to keep the same hydrogen mass flowrate can induce a much higher mixing efficiency while only a bit larger loss of total pressure when compared to the single-stage injection,and hence the two-stage injection is superior to the single-stage injection.The research results can direct the design of the fuel injection method in the combustor of scramjet engine.展开更多
Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixin...Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixing region. The former goal suffices for some purposes, while important problems of chemical reactions(e.g. flames) and nuclear reactions depend critically on the second goal in addition to the first one. Here we review recent progress in establishing a conceptual reformulation of convergence, and we illustrate these concepts with a review of recent numerical studies addressing turbulence and mixing in the high Reynolds number limit. We review significant progress on the first goal, regarding the mixing region, and initial progress on the second goal, regarding atomic level mixing properties. New results concerning non-uniqueness of the infinite Reynolds number solutions and other consequences of a renormalization group point of view, to be published in detail elsewhere, are summarized here.The notion of stochastic convergence(of probability measures and probability distribution functions) replaces traditional pointwise convergence. The primary benefit of this idea is its increased stability relative to the statistical "noise" which characterizes turbulent flow. Our results also show that this modification of convergence, with sufficient mesh refinement, may not be needed. However, in practice, mesh refinement is seldom sufficient and the stochastic convergence concepts have a role.Related to this circle of ideas is the observation that turbulent mixing, in the limit of high Reynolds number, appears to be non-unique. Not only have multiple solutions been observed(and published) for identical problems, but simple physics based arguments and more refined arguments based on the renormalization group come to the same conclusion.Because of the non-uniqueness inherent in numerical models of high Reynolds number turbulence and mixing, we also include here numerical examples of validation. The algorithm we use here has two essential components. We depend on Front Tracking to allow accurate resolution of flows with sharp interfaces or steep gradients(concentration or thermal), as are common in turbulent mixing problems. The higher order and enhanced algorithms for interface tracking, both those already developed, and those proposed here, allow a high resolution and uniquely accurate description of sample mixing problems. Additionally, we depend on the use of dynamic subgrid scale models to set otherwise missing values for turbulent transport coefficients, a step that breaks the non-uniqueness.展开更多
基金supported by the Major Basic Research Development Program of China (973 Program)(No.2013CB228606)the National Science foundation of China (No.41174117)+1 种基金the National Major Science-Technology Project (No.2011ZX05031-001)Innovation Fund of PetroChina (No.2010D-5006-0301)
文摘Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak reflections. The Cauchy function, modified Cauchy function, and Huber function are commonly used constraint criteria in sparse deconvolution. We used numerical experiments to analyze the ability of sparsity constrained deconvolution to restore reflectivity sequences and protect weak reflections under different constraint criteria. The experimental results demonstrate that the performance of sparsity constrained deconvolution depends on the agreement between the constraint criteria and the probability distribution of the reflectivity sequences; furthermore, the modified Cauchy- constrained criterion protects the weak reflections better than the other criteria. Based on the model experiments, the probability distribution of the reflectivity sequences of carbonate and clastic formations is statistically analyzed by using well-logging data and then the modified Cauchy-constrained deconvolution is applied to real seismic data much improving the resolution.
基金Supported by the National Natural Science Foundation of China (No. 20299030).
文摘Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.
基金Supported by the National Natural Science Foundation of China(No.29776039).
文摘The stretching and folding of fluid element during chaotic mixing field is studied using numerical method. The chaotic mixing process is caused by periodic secondary flow in a twisted curved pipe. Using the nonlinear discrete velocity field as the dynamical system, the present study connects the fluid particle's stretching along its trajectory in one period to a linearized time-varying variational equation. After numerical approximation of the variational equation, fluid stretching is calculated on the whole cross section. The stretching distribution shows an exponential fluid stretching and folding, which indicates an excellent mixing performance.
文摘This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.
文摘A linear mixed model is used to determine the explaining infant mortality rate data of United Nations countries. The HDI (human development index) has a significant negative linear relationship with infant mortality rate. United Nations data shows that the infant mortality rate has a descending trend over the period 1990-2010. This study aims to assess the value of the HDI as a predictor of infant mortality rate. Findings in the paper suggest that significant percentage reductions in infant mortality might be possible for countries for controlling the HDI.
文摘The paper presents the research for the purpose of selecting microorganisms into the production process of "chao" to improve the quality of "chao" products and ensure food safety. Several analytical methods such as determination of formal nitrogen, determination of the protease hydrolysis activity, sensory evaluation method, experimental procedure, methods of analysis and processing of empirical data were used in this study. The findings showed that two out of four selected microorganism strains (one strain of fungi and three strains of bacteria denoted NM1, VK1, VK2, VK3, respectively) were the most appropriate for the cooperation among them and the production of %hao", which were coded NM1 and VK1. The suitable mixing proportion of strains of NM1 and VK1 was determined at 1:1.25, compatible with the 1:100 ratio of the varieties of microorganisms (in powder form) to tofu.
文摘A numerical method using AUSMDV scheme and k-ω SST turbulence model with an explicit compressibility correction was developed,and a 3-D numerical simulation of a supersonic flow field with a vertical sonic jet of hydrogen was performed.Good agreement between numerical results and experimental data validated the reliability of the numerical method.Whereafter,two parameters,mass-weighted average total pressure and mixing efficiency,were defined to evaluate the mixing performance of different injection schemes.Based on the numerical method and evaluation criterion,the mixing characteristics of different injection schemes were studied in detail.It was found that for the mixing field of supersonic transverse jet,the near-field mixing is controlled by convection transport while the far-field mixing is controlled by mass diffusion;the circular-hole injection causes a loss of total pressure comparable to the slot injection,but can induce a much higher mixing efficiency because of its 3-D flow characteristic;the variation of injection angle under circular-hole injection mainly affects the near-field mixing degree,and among the five injection angles studied in the present paper,angle 120° is the optimal one;with the increase of the ratio between injector space and diameter,the induced mixing efficiency increases while the caused loss of total pressure can grow greatly;the two-stage injection method designed through reducing the injector area to keep the same hydrogen mass flowrate can induce a much higher mixing efficiency while only a bit larger loss of total pressure when compared to the single-stage injection,and hence the two-stage injection is superior to the single-stage injection.The research results can direct the design of the fuel injection method in the combustor of scramjet engine.
基金supported in part by the Nuclear Energy University Program of the Department of Energy,project NEUP-09-349,Battelle Energy Alliance LLC 00088495(subaward with DOE as prime sponsor),Leland Stanford Junior University 2175022040367A(subaward with DOE asprime sponsor),Army Research Office W911NF0910306This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory,which is supported by the Office of Science of the U.S.Department of Energy under contract DE-AC02-06CH11357.Stony Brook University Preprint number SUNYSB-AMS-12-04
文摘Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixing region. The former goal suffices for some purposes, while important problems of chemical reactions(e.g. flames) and nuclear reactions depend critically on the second goal in addition to the first one. Here we review recent progress in establishing a conceptual reformulation of convergence, and we illustrate these concepts with a review of recent numerical studies addressing turbulence and mixing in the high Reynolds number limit. We review significant progress on the first goal, regarding the mixing region, and initial progress on the second goal, regarding atomic level mixing properties. New results concerning non-uniqueness of the infinite Reynolds number solutions and other consequences of a renormalization group point of view, to be published in detail elsewhere, are summarized here.The notion of stochastic convergence(of probability measures and probability distribution functions) replaces traditional pointwise convergence. The primary benefit of this idea is its increased stability relative to the statistical "noise" which characterizes turbulent flow. Our results also show that this modification of convergence, with sufficient mesh refinement, may not be needed. However, in practice, mesh refinement is seldom sufficient and the stochastic convergence concepts have a role.Related to this circle of ideas is the observation that turbulent mixing, in the limit of high Reynolds number, appears to be non-unique. Not only have multiple solutions been observed(and published) for identical problems, but simple physics based arguments and more refined arguments based on the renormalization group come to the same conclusion.Because of the non-uniqueness inherent in numerical models of high Reynolds number turbulence and mixing, we also include here numerical examples of validation. The algorithm we use here has two essential components. We depend on Front Tracking to allow accurate resolution of flows with sharp interfaces or steep gradients(concentration or thermal), as are common in turbulent mixing problems. The higher order and enhanced algorithms for interface tracking, both those already developed, and those proposed here, allow a high resolution and uniquely accurate description of sample mixing problems. Additionally, we depend on the use of dynamic subgrid scale models to set otherwise missing values for turbulent transport coefficients, a step that breaks the non-uniqueness.