Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results conta...Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.展开更多
Higher mathematics is more extensive, profound and abstract than elementary mathematics; it is the development and sublimation of elementary mathematics. They have a deep connection, determinant and matrix theories or...Higher mathematics is more extensive, profound and abstract than elementary mathematics; it is the development and sublimation of elementary mathematics. They have a deep connection, determinant and matrix theories originated in Elementary Mathematics, in tum, they also can be used as tools to solve related problems, and they have important roles in guiding the study of elementary mathematics. This paper will introduce the methods of solving some recursive sequence problems by constructing determinants and matrices.展开更多
The basic inference function of mathematical statistics, the score function, is a vector function. The author has introduced the scalar score, a scalar inference function, which reflects main features of a continuous ...The basic inference function of mathematical statistics, the score function, is a vector function. The author has introduced the scalar score, a scalar inference function, which reflects main features of a continuous probability distribution and which is simple. Its simplicity makes it possible to introduce new relevant numerical characteristics of continuous distributions. The t-mean and score variance are descriptions of distributions without the drawbacks of the mean and variance, which may not exist even in cases of regular distributions. Their sample counterparts appear to be alternative descriptions of the observed data. The scalar score itself appears to be a new mathematical tool, which could be used in solving traditional statistical problems for models far from the normal one, skewed and heavy-tailed.展开更多
In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In...In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In this approach, techniques of data mining are used to extract knowledge from existing data. The data is extracted in the form of rules that are used in the development of a predictive intelligent system. Currently, the specification of these rules is built by an expert or data mining. When data mining on a large database is used, the number of generated rules is very complex too. The main goal of this work is minimize the rule generation time. The proposed tool, called DiagData, extracts knowledge automatically or semi-automatically from a database and uses it to build an intelligent system for disease prediction. In this work, the decision tree learning algorithm was used to generate the rules. A toolbox called Fuzzygen was used to generate a prediction system from rules generated by decision tree algorithm. The language used to implement this software was Java. The DiagData has been used in diseases prediction and diagnosis systems and in the validation of economic and environmental indicators in agricultural production systems. The validation process involved measurements and comparisons of the time spent to enter the rules by an expert with the time used to insert the same rules with the proposed tool. Thus, the tool was successfully validated, providing a reduction of time.展开更多
The deepth and width of CAD application in coal mining equipments need promote furtherly. The information stream method is applied as the main clue to deal with the related technology and problems in research of manuf...The deepth and width of CAD application in coal mining equipments need promote furtherly. The information stream method is applied as the main clue to deal with the related technology and problems in research of manufacturing tools (Fixtures) planning for AFC (mining scraper bars conveyor) using CAD technique.展开更多
Recently,the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data,on the basis of methods called spatialization methods.Spatialization met...Recently,the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data,on the basis of methods called spatialization methods.Spatialization methods aim at visualizing multidimensional data into low-dimensional representational spaces by making use of spatial metaphors and applying dimension reduction techniques.Spatial metaphors are able to provide a metaphoric framework for the visualization of information at different levels of granularity.The present paper makes an investigation on how the issue of granularity is handled in the context of representative examples of spatialization methods.Furthermore,this paper introduces the prototyping tool Geo-Scape,which provides an interactive spatialization environment for representing and exploring multidimensional data at different levels of granularity,by making use of a kernel density estimation technique and on the landscape "smoothness" metaphor.A demonstration scenario is presented next to show how Geo-Scape helps to discover knowledge into a large set of data,by grouping them into meaningful clusters on the basis of a similarity measure and organizing them at different levels of granularity.展开更多
基金Under the auspices of Special Fund of Ministry of Land and Resources of China in Public Interest(No.201511001)
文摘Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.
文摘Higher mathematics is more extensive, profound and abstract than elementary mathematics; it is the development and sublimation of elementary mathematics. They have a deep connection, determinant and matrix theories originated in Elementary Mathematics, in tum, they also can be used as tools to solve related problems, and they have important roles in guiding the study of elementary mathematics. This paper will introduce the methods of solving some recursive sequence problems by constructing determinants and matrices.
文摘The basic inference function of mathematical statistics, the score function, is a vector function. The author has introduced the scalar score, a scalar inference function, which reflects main features of a continuous probability distribution and which is simple. Its simplicity makes it possible to introduce new relevant numerical characteristics of continuous distributions. The t-mean and score variance are descriptions of distributions without the drawbacks of the mean and variance, which may not exist even in cases of regular distributions. Their sample counterparts appear to be alternative descriptions of the observed data. The scalar score itself appears to be a new mathematical tool, which could be used in solving traditional statistical problems for models far from the normal one, skewed and heavy-tailed.
文摘In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In this approach, techniques of data mining are used to extract knowledge from existing data. The data is extracted in the form of rules that are used in the development of a predictive intelligent system. Currently, the specification of these rules is built by an expert or data mining. When data mining on a large database is used, the number of generated rules is very complex too. The main goal of this work is minimize the rule generation time. The proposed tool, called DiagData, extracts knowledge automatically or semi-automatically from a database and uses it to build an intelligent system for disease prediction. In this work, the decision tree learning algorithm was used to generate the rules. A toolbox called Fuzzygen was used to generate a prediction system from rules generated by decision tree algorithm. The language used to implement this software was Java. The DiagData has been used in diseases prediction and diagnosis systems and in the validation of economic and environmental indicators in agricultural production systems. The validation process involved measurements and comparisons of the time spent to enter the rules by an expert with the time used to insert the same rules with the proposed tool. Thus, the tool was successfully validated, providing a reduction of time.
文摘The deepth and width of CAD application in coal mining equipments need promote furtherly. The information stream method is applied as the main clue to deal with the related technology and problems in research of manufacturing tools (Fixtures) planning for AFC (mining scraper bars conveyor) using CAD technique.
文摘Recently,the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data,on the basis of methods called spatialization methods.Spatialization methods aim at visualizing multidimensional data into low-dimensional representational spaces by making use of spatial metaphors and applying dimension reduction techniques.Spatial metaphors are able to provide a metaphoric framework for the visualization of information at different levels of granularity.The present paper makes an investigation on how the issue of granularity is handled in the context of representative examples of spatialization methods.Furthermore,this paper introduces the prototyping tool Geo-Scape,which provides an interactive spatialization environment for representing and exploring multidimensional data at different levels of granularity,by making use of a kernel density estimation technique and on the landscape "smoothness" metaphor.A demonstration scenario is presented next to show how Geo-Scape helps to discover knowledge into a large set of data,by grouping them into meaningful clusters on the basis of a similarity measure and organizing them at different levels of granularity.