There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal we...There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.展开更多
A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity re...A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.展开更多
To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of t...To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.展开更多
The expression of mutual impedance between two probes in a circular waveguide is derived by means of a vector potential function, reaction concept and reciprocity theorem. The waveguide is semi-infinite, and one end o...The expression of mutual impedance between two probes in a circular waveguide is derived by means of a vector potential function, reaction concept and reciprocity theorem. The waveguide is semi-infinite, and one end of the waveguide is terminated to a load with a reflection coefficient. The contribution to the mutual resistance is found to come from the dominant mode, while the contribution to the mutual reactance comes from the dominant mode and the higher order modes. The major contribution to the mutual reactance is from the dominant mode, since the higher modes decay rapidly with the increasing the probes’ of separation distance. However, as the separation distance approaches zero, the higher modes become dominant, which results in a large value of the mutual reactance. The mutual impedance is dependent on the location and height of the probes, their separation distance and the location of the terminal plane.展开更多
A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experiment...A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.展开更多
The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of...The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of molten metal were calculated quantitatively. The turbulent Reynolds number is in the order of 103 , and Reynolds number is in the order of 104 if taking the depth of molten metal as the characteristic length. The results show that the molten metal flow is the turbulence of high Reynolds number, the turbulent Reynolds number is more appropriate than Reynolds number to be used to describe the turbulent characteristic of molten metal, and Hartman number displays very well that electromagnetic force inhibits turbulent motion of molten metal.展开更多
With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in ...With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.展开更多
Based on the principle of electrical penetration, the reflection characteristics of collapse columns at different locations of a working face is numerically simulated by using a 3D finite element method. The data coll...Based on the principle of electrical penetration, the reflection characteristics of collapse columns at different locations of a working face is numerically simulated by using a 3D finite element method. The data collected by the electrical penetration is processed and interpreted using “tunnel penetration” which is similar to radio wave penetration. Reflection characteristics of collapse columns at different locations below floors of coal seams are analyzed, providing a new paradigm and a theoretical foundation for processing and interpreting electrical penetration data. The tomography analysis is made based on data simulation and calculation results and alltransmitting-receiving points are analyzed for their corresponding maximum attenuation values and maximum absorption coefficients. On the basis of this, a new method for precisely interpreting the spatial positions of geological anomalous bodies is suggested. The simulation shows that 1) the detection result of both roof and floors of the working face by electrical penetration is a volumetric effect and 2) there exists a corresponding relation between the detection depth and the working face width, with the op- timal detection depth within 40% of the workin face width.展开更多
To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cath...To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cathode distance(ACD)and electrolyte height(EH)on the thermo-electrical behavior of the NRERC were studied by ANSYS.The results illustrate that the cell voltage drop(CVD)and the temperature will rise with a similar tendency when the ACD increases.Also,the temperature rises gradually with EH,but the CVD decreases.Ultimately,when the ACD is 115 mm and the EH is 380 mm,the CVD is 4.61 V and the temperature is 1109.8℃.Under these conditions,the thermal field distribution is more reasonable and the CVD is lower,which is beneficial to the long service life and low energy consumption of the NRERC.展开更多
This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. ...This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.展开更多
Based on the region model of lambda bipolar transistor ( LBT), a dividing region theory model of PLBT is set up,simulated and verified. Firstly, the principal operations of different kinds of photoelectronic lambda bi...Based on the region model of lambda bipolar transistor ( LBT), a dividing region theory model of PLBT is set up,simulated and verified. Firstly, the principal operations of different kinds of photoelectronic lambda bipolar transistor ( PLBT) are characterized by a simple circuit model. Through mathematical analysis of the equivalent circuit, the typical characteristics curve is divided into positive resistance, peak, negative resistance and cutoff regions. Secondly, by analyzing and simulating this model, the ratio of MOSFET width to channel length, threshold voltage and common emitter gain are discovered as the main structure parameters that determine the characteristic curves of PLBT. And peak region width, peak current value, negative resistance value and valley voltage value of PLBT can be changed conveniently according to the actual demands by modifying these parameters. Finally comparisons of the characteristics of the fabricated devices and the simu- lation results are made, which show that the analytical results are in agreement with the observed devices characteristics.展开更多
Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was...Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals,the feed particle size and the location of conductive minerals in ores. The angle of material contact surface with the discharge electrode is also an important factor in the intensity of electrical field. Moreover,it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with sharpening the contact angle. Besides, the electrical discharge in the samples is converted to the electrohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.展开更多
基金supported by the National Science and Technology Major Project of China(Nos.2016ZX05014-002-001,2016ZX05002-005-001,and 2017ZX05005-005-005)
文摘There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.
文摘A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.
基金supported by the National High Technology Research and Development Program (863 Program)(2009AA06Z108)
文摘To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.
基金Biographies: The National Natural Science Foundation of China(29776012).
文摘The expression of mutual impedance between two probes in a circular waveguide is derived by means of a vector potential function, reaction concept and reciprocity theorem. The waveguide is semi-infinite, and one end of the waveguide is terminated to a load with a reflection coefficient. The contribution to the mutual resistance is found to come from the dominant mode, while the contribution to the mutual reactance comes from the dominant mode and the higher order modes. The major contribution to the mutual reactance is from the dominant mode, since the higher modes decay rapidly with the increasing the probes’ of separation distance. However, as the separation distance approaches zero, the higher modes become dominant, which results in a large value of the mutual reactance. The mutual impedance is dependent on the location and height of the probes, their separation distance and the location of the terminal plane.
文摘A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.
文摘The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of molten metal were calculated quantitatively. The turbulent Reynolds number is in the order of 103 , and Reynolds number is in the order of 104 if taking the depth of molten metal as the characteristic length. The results show that the molten metal flow is the turbulence of high Reynolds number, the turbulent Reynolds number is more appropriate than Reynolds number to be used to describe the turbulent characteristic of molten metal, and Hartman number displays very well that electromagnetic force inhibits turbulent motion of molten metal.
基金Project(51507073)supported by the National Natural Science Foundation of China。
文摘With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.
基金Projects 20050290501supported by the Specialized Research Fund for the Doctoral Program of Higher Education40674074 by the National Natural Science Foundation of China
文摘Based on the principle of electrical penetration, the reflection characteristics of collapse columns at different locations of a working face is numerically simulated by using a 3D finite element method. The data collected by the electrical penetration is processed and interpreted using “tunnel penetration” which is similar to radio wave penetration. Reflection characteristics of collapse columns at different locations below floors of coal seams are analyzed, providing a new paradigm and a theoretical foundation for processing and interpreting electrical penetration data. The tomography analysis is made based on data simulation and calculation results and alltransmitting-receiving points are analyzed for their corresponding maximum attenuation values and maximum absorption coefficients. On the basis of this, a new method for precisely interpreting the spatial positions of geological anomalous bodies is suggested. The simulation shows that 1) the detection result of both roof and floors of the working face by electrical penetration is a volumetric effect and 2) there exists a corresponding relation between the detection depth and the working face width, with the op- timal detection depth within 40% of the workin face width.
基金Project(51674302)supported by the National Natural Science Foundation of China。
文摘To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cathode distance(ACD)and electrolyte height(EH)on the thermo-electrical behavior of the NRERC were studied by ANSYS.The results illustrate that the cell voltage drop(CVD)and the temperature will rise with a similar tendency when the ACD increases.Also,the temperature rises gradually with EH,but the CVD decreases.Ultimately,when the ACD is 115 mm and the EH is 380 mm,the CVD is 4.61 V and the temperature is 1109.8℃.Under these conditions,the thermal field distribution is more reasonable and the CVD is lower,which is beneficial to the long service life and low energy consumption of the NRERC.
文摘This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.
基金Supported by "973" National Key Basic Research Program ( No. 2002CB311905).
文摘Based on the region model of lambda bipolar transistor ( LBT), a dividing region theory model of PLBT is set up,simulated and verified. Firstly, the principal operations of different kinds of photoelectronic lambda bipolar transistor ( PLBT) are characterized by a simple circuit model. Through mathematical analysis of the equivalent circuit, the typical characteristics curve is divided into positive resistance, peak, negative resistance and cutoff regions. Secondly, by analyzing and simulating this model, the ratio of MOSFET width to channel length, threshold voltage and common emitter gain are discovered as the main structure parameters that determine the characteristic curves of PLBT. And peak region width, peak current value, negative resistance value and valley voltage value of PLBT can be changed conveniently according to the actual demands by modifying these parameters. Finally comparisons of the characteristics of the fabricated devices and the simu- lation results are made, which show that the analytical results are in agreement with the observed devices characteristics.
文摘Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals,the feed particle size and the location of conductive minerals in ores. The angle of material contact surface with the discharge electrode is also an important factor in the intensity of electrical field. Moreover,it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with sharpening the contact angle. Besides, the electrical discharge in the samples is converted to the electrohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.