Frame skipping in low bit video coding could significantly reduce the visual quality of reconstructed video. At the same time, if the complexity of the video sequence remains high for a long period, then driving up th...Frame skipping in low bit video coding could significantly reduce the visual quality of reconstructed video. At the same time, if the complexity of the video sequence remains high for a long period, then driving up the long term average bit rate, the only resort of MPEG-4 Q2 rate control algorithm results in using a high quantization scale, which shows a poor visual quality of the reconstructed video. This paper analyzes the main causes of frame skipping in current MPEG-4 frame rate control scheme, and presents a new rate control algorithm based on the quadratic R-D model over a CBR channel. Key features of the present work are: 1) the bits allocated to each P-frame or B-frame are in proportion to its distance from the end of this GOP, i.e. more bits are allocated to the frames that are nearer to their reference Ⅰ-frame; 2) the target buffer level is changeable in the GOP, at the end of each GOP(five P-frames or B-frames), the target buffer level is linearly reduced from 1/2 to 1/4 of buffer size, to other frames, the target buffer level is set to 1/2 of buffer size; 3) a selective and judicious use of the reduced resolution mode, in addition to a modulation of the quantization scale parameter, is to control the average long term bit rate. Experimental results with different video sequences of varied complexity, encoded at low bit rates show better efficacy of the proposed algorithm than MPEG-4 Q2 rate control scheme, and the experimental results also show that the improved algorithm has significantly reduced the number of frame skipping, increased the overall PSNR, and improved the perceptual quality.展开更多
文摘Frame skipping in low bit video coding could significantly reduce the visual quality of reconstructed video. At the same time, if the complexity of the video sequence remains high for a long period, then driving up the long term average bit rate, the only resort of MPEG-4 Q2 rate control algorithm results in using a high quantization scale, which shows a poor visual quality of the reconstructed video. This paper analyzes the main causes of frame skipping in current MPEG-4 frame rate control scheme, and presents a new rate control algorithm based on the quadratic R-D model over a CBR channel. Key features of the present work are: 1) the bits allocated to each P-frame or B-frame are in proportion to its distance from the end of this GOP, i.e. more bits are allocated to the frames that are nearer to their reference Ⅰ-frame; 2) the target buffer level is changeable in the GOP, at the end of each GOP(five P-frames or B-frames), the target buffer level is linearly reduced from 1/2 to 1/4 of buffer size, to other frames, the target buffer level is set to 1/2 of buffer size; 3) a selective and judicious use of the reduced resolution mode, in addition to a modulation of the quantization scale parameter, is to control the average long term bit rate. Experimental results with different video sequences of varied complexity, encoded at low bit rates show better efficacy of the proposed algorithm than MPEG-4 Q2 rate control scheme, and the experimental results also show that the improved algorithm has significantly reduced the number of frame skipping, increased the overall PSNR, and improved the perceptual quality.