In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard ...In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard transform and 2 ×2 Hadamard transform is proposed. By simplifying these transforms and exploring their similarities the proposed design merges the architectures processing individual transforms into a high-performance multi-transform coding architecture.Using a semiconductor manufacturing international corporation SMIC 0.18 μm complementary metal oxide semiconductor CMOS technology the proposed architecture achieves the maximum operating clock frequency of 200 MHz and the throughput rate of 800 ×106 pixel/s with the hardware cost of 3 704 gates.The results demonstrate that the data throughput rate per unit area DTUA of this design is at least 40.28%higher than that of the reference design.This design can meet the requirements of real-time decoding digital cinema video 4 096 ×2 048@30 Hz at 62.9 MHz which helps to reduce the power consumption.展开更多
A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of ...A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of integer wavelet transform coefficients and the characteristics of Rice entropy coder, the divide and rule method is used for high-frequency sub-bands and low-frequency one. High-frequency sub-bands are coded by the Rice entropy coder, and low-frequency coefficients are predicted before coding. The role of predictor is to map the low-frequency coefficients into symbols suitable for the entropy coding. Experimental results show that the average Comprcssion Ratio (CR) of our approach is about two, which is close to that of JPEG 2000. The algorithm is simple and easy to be implemented in hardware. Moreover, it has the merits of adaptability, and independent data packet. So the algorithm can adapt to space lossless compression applications.展开更多
Karhunen-Loeve transform (KLT) is the optimal transform that minimizes distortion at a given bit allocation for Gaussian source. As a KLT matrix usually contains non-integers, integer-KLT design is a classical probl...Karhunen-Loeve transform (KLT) is the optimal transform that minimizes distortion at a given bit allocation for Gaussian source. As a KLT matrix usually contains non-integers, integer-KLT design is a classical problem. In this paper, a joint reversibility-gain (R-G) model is proposed for integer-KLT design in video coding. Specifically, the 'reversibility' is modeled according to distortion analysis in using forward and inverse integer transform without quantization. It not only measures how invcrtible a transform is, but also bounds the distortion introduced by the non-orthonormal integer transform process. The 'gain' means transform coding gain (TCG), which is a widely used criterion for transform design in video coding. Since KLT maximizes the TCG under some assumptions, here we define the TCG loss ratio (LR) to measure how much coding gain an integer-KLT loses when compared with the original KLT. Thus, the R-G model can be explained as follows: subject to a certain TCG LR, an integer- KLT with the best reversibility is the optimal integer transform for a given non-integer-KLT. Experimental results show that the R-G model can guide the design of integer-KLTs with good performance.展开更多
The achievement in optical/digital color photography based on white-light information processing including the color-encoding camera, the color image decoder, the integral window Fourier algorithm of the Fourier trans...The achievement in optical/digital color photography based on white-light information processing including the color-encoding camera, the color image decoder, the integral window Fourier algorithm of the Fourier transform in digital decoding, the color correction of the retrieval color image and the fusion of zero order diffraction is reported. This technique has found its important applications in the fields of aerial reconnaissance photography and far-distance ground photography due to its features of large information capacity, convenience in archival storage, the capability of color enhancement, particularly easy transportation by Internet.展开更多
基金The National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2013BAJ05B03)
文摘In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard transform and 2 ×2 Hadamard transform is proposed. By simplifying these transforms and exploring their similarities the proposed design merges the architectures processing individual transforms into a high-performance multi-transform coding architecture.Using a semiconductor manufacturing international corporation SMIC 0.18 μm complementary metal oxide semiconductor CMOS technology the proposed architecture achieves the maximum operating clock frequency of 200 MHz and the throughput rate of 800 ×106 pixel/s with the hardware cost of 3 704 gates.The results demonstrate that the data throughput rate per unit area DTUA of this design is at least 40.28%higher than that of the reference design.This design can meet the requirements of real-time decoding digital cinema video 4 096 ×2 048@30 Hz at 62.9 MHz which helps to reduce the power consumption.
文摘A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of integer wavelet transform coefficients and the characteristics of Rice entropy coder, the divide and rule method is used for high-frequency sub-bands and low-frequency one. High-frequency sub-bands are coded by the Rice entropy coder, and low-frequency coefficients are predicted before coding. The role of predictor is to map the low-frequency coefficients into symbols suitable for the entropy coding. Experimental results show that the average Comprcssion Ratio (CR) of our approach is about two, which is close to that of JPEG 2000. The algorithm is simple and easy to be implemented in hardware. Moreover, it has the merits of adaptability, and independent data packet. So the algorithm can adapt to space lossless compression applications.
基金Project supported by the National Natural Science Foundation of China(Nos.61371162 and 61431015)
文摘Karhunen-Loeve transform (KLT) is the optimal transform that minimizes distortion at a given bit allocation for Gaussian source. As a KLT matrix usually contains non-integers, integer-KLT design is a classical problem. In this paper, a joint reversibility-gain (R-G) model is proposed for integer-KLT design in video coding. Specifically, the 'reversibility' is modeled according to distortion analysis in using forward and inverse integer transform without quantization. It not only measures how invcrtible a transform is, but also bounds the distortion introduced by the non-orthonormal integer transform process. The 'gain' means transform coding gain (TCG), which is a widely used criterion for transform design in video coding. Since KLT maximizes the TCG under some assumptions, here we define the TCG loss ratio (LR) to measure how much coding gain an integer-KLT loses when compared with the original KLT. Thus, the R-G model can be explained as follows: subject to a certain TCG LR, an integer- KLT with the best reversibility is the optimal integer transform for a given non-integer-KLT. Experimental results show that the R-G model can guide the design of integer-KLTs with good performance.
文摘The achievement in optical/digital color photography based on white-light information processing including the color-encoding camera, the color image decoder, the integral window Fourier algorithm of the Fourier transform in digital decoding, the color correction of the retrieval color image and the fusion of zero order diffraction is reported. This technique has found its important applications in the fields of aerial reconnaissance photography and far-distance ground photography due to its features of large information capacity, convenience in archival storage, the capability of color enhancement, particularly easy transportation by Internet.