针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分...针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.展开更多
文摘针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.
基金Supported by the National Natural Science Foundation of Chinaunder GrantNo.10771176(国家自然科学基金)the National 985 Project of Chinaunder GrantNo.0000-X07204(985工程二期平台基金)the Scientific Research Foundation of Xiamen University of Chinaunder GrantNo.0630-X01117(厦门大学科研基金)