The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor...The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.展开更多
Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treat...Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.展开更多
Currently,ocean data portals are being developed around the world based on Geographic Information Systems(GIS) as a source of ocean data and information.However,given the relatively high temporal frequency and the int...Currently,ocean data portals are being developed around the world based on Geographic Information Systems(GIS) as a source of ocean data and information.However,given the relatively high temporal frequency and the intrinsic spatial nature of ocean data and information,no current GIS software is adequate to deal effectively and efficiently with spatiotemporal data.Furthermore,while existing ocean data portals are generally designed to meet the basic needs of a broad range of users,they are sometimes very complicated for general audiences,especially for those without training in GIS.In this paper,a new technical architecture for an ocean data integration and service system is put forward that consists of four layers:the operation layer,the extract,transform,and load(ETL) layer,the data warehouse layer,and the presentation layer.The integration technology based on the XML,ontology,and spatiotemporal data organization scheme for the data warehouse layer is then discussed.In addition,the ocean observing data service technology realized in the presentation layer is also discussed in detail,including the development of the web portal and ocean data sharing platform.The application on the Taiwan Strait shows that the technology studied in this paper can facilitate sharing,access,and use of ocean observation data.The paper is based on an ongoing research project for the development of an ocean observing information system for the Taiwan Strait that will facilitate the prevention of ocean disasters.展开更多
In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to a...In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes(including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms(such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here.The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.展开更多
基金Project(11541012) supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department,China
文摘The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.
基金Project(51274107)supported by the National Natural Science Foundation of ChinaProject(2015FB127)supported by the Yunnan Natural Science Foundation,ChinaProject(2016P20151130003)supported by Analysis Foundation of Kunming University of Science and Technology,China
文摘Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.
基金Supported by National High Technology Research and Development Program of China (863 Program) (Nos. 2009AA12Z225,2009AA12Z208)the National Natural Science Foundation of China (No. 61074132)
文摘Currently,ocean data portals are being developed around the world based on Geographic Information Systems(GIS) as a source of ocean data and information.However,given the relatively high temporal frequency and the intrinsic spatial nature of ocean data and information,no current GIS software is adequate to deal effectively and efficiently with spatiotemporal data.Furthermore,while existing ocean data portals are generally designed to meet the basic needs of a broad range of users,they are sometimes very complicated for general audiences,especially for those without training in GIS.In this paper,a new technical architecture for an ocean data integration and service system is put forward that consists of four layers:the operation layer,the extract,transform,and load(ETL) layer,the data warehouse layer,and the presentation layer.The integration technology based on the XML,ontology,and spatiotemporal data organization scheme for the data warehouse layer is then discussed.In addition,the ocean observing data service technology realized in the presentation layer is also discussed in detail,including the development of the web portal and ocean data sharing platform.The application on the Taiwan Strait shows that the technology studied in this paper can facilitate sharing,access,and use of ocean observation data.The paper is based on an ongoing research project for the development of an ocean observing information system for the Taiwan Strait that will facilitate the prevention of ocean disasters.
基金supported by Beijing Natural Science Foundation (L172018)the National Natural Science Foundation of China (21575032, 21775010, 81728010)+1 种基金the Fundamental Research Funds for the Central Universities (PYBZ1707, buctrc201607, PT1801)Open Ground from Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
文摘In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes(including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms(such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here.The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.