期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于组合深度模型的现代汉语数量名短语识别
被引量:
2
1
作者
施寒瑜
曲维光
+2 位作者
魏庭新
周俊生
顾彦慧
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2022年第1期127-135,共9页
数量名短语的识别是识别由数量短语修饰的名词短语左右边界的研究.以往研究中,基于统计学习模型的数量短语识别方法依赖人工特征,需要通过专家知识构建知识库来实现对“数词+量词”短语的识别.本文在以往研究基础上纳入“名词”形成“数...
数量名短语的识别是识别由数量短语修饰的名词短语左右边界的研究.以往研究中,基于统计学习模型的数量短语识别方法依赖人工特征,需要通过专家知识构建知识库来实现对“数词+量词”短语的识别.本文在以往研究基础上纳入“名词”形成“数词+量词+名词”等八类数量名短语,并采用深度学习方法解决这一边界识别任务.通过BERT模型对原始文本进行上下文特征表示,利用Lattice LSTM模型字词结合的思想将标准分词作为软特征融入文本字符级的特征表示中,最后通过CRF全局约束识别数量名短语边界.实验结果表明,本文方法在AMR语料上达到较优结果,精确率、召回率、F1值分别为80.83%,89.78%,85.07%.
展开更多
关键词
数量名短语识别
BERT
Lattice
LSTM
CRF
下载PDF
职称材料
题名
基于组合深度模型的现代汉语数量名短语识别
被引量:
2
1
作者
施寒瑜
曲维光
魏庭新
周俊生
顾彦慧
机构
南京师范大学计算机与电子信息学院/人工智能学院
南京师范大学文学院
南京师范大学国际文化教育学院
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2022年第1期127-135,共9页
基金
国家自然科学基金项目(61772278、61472191)
国家社科基金项目(21&ZD288、18BYY127).
文摘
数量名短语的识别是识别由数量短语修饰的名词短语左右边界的研究.以往研究中,基于统计学习模型的数量短语识别方法依赖人工特征,需要通过专家知识构建知识库来实现对“数词+量词”短语的识别.本文在以往研究基础上纳入“名词”形成“数词+量词+名词”等八类数量名短语,并采用深度学习方法解决这一边界识别任务.通过BERT模型对原始文本进行上下文特征表示,利用Lattice LSTM模型字词结合的思想将标准分词作为软特征融入文本字符级的特征表示中,最后通过CRF全局约束识别数量名短语边界.实验结果表明,本文方法在AMR语料上达到较优结果,精确率、召回率、F1值分别为80.83%,89.78%,85.07%.
关键词
数量名短语识别
BERT
Lattice
LSTM
CRF
Keywords
the recognition of quantity noun phrases
BERT
lattice LSTM
CRF
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于组合深度模型的现代汉语数量名短语识别
施寒瑜
曲维光
魏庭新
周俊生
顾彦慧
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部