A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in ...A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.展开更多
Gap statistic is a well-known index of clustering validity, but its realization is difficult to be comprehended and accurately determined. A direct method is presented to improve the performance of the Gap statistic, ...Gap statistic is a well-known index of clustering validity, but its realization is difficult to be comprehended and accurately determined. A direct method is presented to improve the performance of the Gap statistic, which applies the two-order difference of within-cluster dispersion to replace the constructed null reference distribution in the Gap statistic. Hence, the realization of the Gap statistic becomes easy and is reformulated, and its uncertainty in applications is reduced. Also, the limitation of the Gap statistic is analyzed by two typical examples, that is, the Gap statistic is difficult to be applied to the dataset that contains strong-overlap or uneven-density clusters. Experiments verify the usefulness of the proposed method.展开更多
This paper focuses on the methods and process of spatial aggregation based on semantic and geometric characteristics of spatial objects and relations among the objects with the help of spatial data structure (Formal D...This paper focuses on the methods and process of spatial aggregation based on semantic and geometric characteristics of spatial objects and relations among the objects with the help of spatial data structure (Formal Data Structure),the Local Constrained Delaunay Triangulations and semantic hierarchy.The adjacent relation among connected objects and unconnected objects has been studied through constrained triangle as elementary processing unit in aggregation operation.The hierarchical semantic analytical matrix is given for analyzing the similarity between objects types and between objects.Several different cases of aggregation have been presented in this paper.展开更多
The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle me...The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.展开更多
文摘A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.
基金National Natural Science Foundation of China(No.60572065, 60772080, 60532020)
文摘Gap statistic is a well-known index of clustering validity, but its realization is difficult to be comprehended and accurately determined. A direct method is presented to improve the performance of the Gap statistic, which applies the two-order difference of within-cluster dispersion to replace the constructed null reference distribution in the Gap statistic. Hence, the realization of the Gap statistic becomes easy and is reformulated, and its uncertainty in applications is reduced. Also, the limitation of the Gap statistic is analyzed by two typical examples, that is, the Gap statistic is difficult to be applied to the dataset that contains strong-overlap or uneven-density clusters. Experiments verify the usefulness of the proposed method.
文摘This paper focuses on the methods and process of spatial aggregation based on semantic and geometric characteristics of spatial objects and relations among the objects with the help of spatial data structure (Formal Data Structure),the Local Constrained Delaunay Triangulations and semantic hierarchy.The adjacent relation among connected objects and unconnected objects has been studied through constrained triangle as elementary processing unit in aggregation operation.The hierarchical semantic analytical matrix is given for analyzing the similarity between objects types and between objects.Several different cases of aggregation have been presented in this paper.
基金Project supported by the National Natural Science Foundation of China (Nos. 51025858 and 51178415)
文摘The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method.