Supersonic unsteady flows of two and three dimensional cavities, which have the same basic measures, length, depth and aft wall angle, are investigated numerically by using hybrid RANS/LES (Reynolds-Averaged Navier-S...Supersonic unsteady flows of two and three dimensional cavities, which have the same basic measures, length, depth and aft wall angle, are investigated numerically by using hybrid RANS/LES (Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation) method. In particular, the mass exchange and oscillation characteristics of the cavities are analyzed and compared. It is shown that the two and three dimensional cavities have almost the same residence time except that the three dimensional one has a little larger mass decay at beginning, which may attribute to the influence of the streamwise vortices. The two dimensional cavity has three dominant frequencies while the three dimensional one has only one oscillation dominant frequency, that is, the three dimensional effects simplify the oscillation modes in the cavity. The distributions of oscillation energy are approximately universal in the transverse and spanwise directions. However, the oscillation energy in the streamwise direction shows a hybrid monotone/periodic distribution, which may be caused by the streamwise-propagating pressure waves.展开更多
文摘Supersonic unsteady flows of two and three dimensional cavities, which have the same basic measures, length, depth and aft wall angle, are investigated numerically by using hybrid RANS/LES (Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation) method. In particular, the mass exchange and oscillation characteristics of the cavities are analyzed and compared. It is shown that the two and three dimensional cavities have almost the same residence time except that the three dimensional one has a little larger mass decay at beginning, which may attribute to the influence of the streamwise vortices. The two dimensional cavity has three dominant frequencies while the three dimensional one has only one oscillation dominant frequency, that is, the three dimensional effects simplify the oscillation modes in the cavity. The distributions of oscillation energy are approximately universal in the transverse and spanwise directions. However, the oscillation energy in the streamwise direction shows a hybrid monotone/periodic distribution, which may be caused by the streamwise-propagating pressure waves.