The relationship between forms and forces is one of the main topics of structural morphology. This harmonious coexisting link is very strong for systems in tensegrity state, commonly called "tensegrity systems". It ...The relationship between forms and forces is one of the main topics of structural morphology. This harmonious coexisting link is very strong for systems in tensegrity state, commonly called "tensegrity systems". It is currently apparent that, among the tensegrity systems, there also exist cable-bar cells with a discontinuous network of cables. It is possible to design a separate set of cables inside the cable-bar elementary cell and to establish a self-stress state of equilibrium. In this connection, the author of this paper suggested to assume a new Class-Theta tensegrity systems. Each of the basic tensegrity systems termed Class-Theta possesses an external and internal set of tension components. The shape of Greek capital letter 69 (Theta) reflects two sets of such components (two sets of tendons, cables, etc.). This notation corresponds to Skelton's Class-k tensegrity structure. As shown in this paper, the Class-Theta tensegrity cell can exemplify a geometrically and practically useful form for the lightweight and long-span modular structures, mainly but not only in view of civil engineering and architecture.展开更多
文摘The relationship between forms and forces is one of the main topics of structural morphology. This harmonious coexisting link is very strong for systems in tensegrity state, commonly called "tensegrity systems". It is currently apparent that, among the tensegrity systems, there also exist cable-bar cells with a discontinuous network of cables. It is possible to design a separate set of cables inside the cable-bar elementary cell and to establish a self-stress state of equilibrium. In this connection, the author of this paper suggested to assume a new Class-Theta tensegrity systems. Each of the basic tensegrity systems termed Class-Theta possesses an external and internal set of tension components. The shape of Greek capital letter 69 (Theta) reflects two sets of such components (two sets of tendons, cables, etc.). This notation corresponds to Skelton's Class-k tensegrity structure. As shown in this paper, the Class-Theta tensegrity cell can exemplify a geometrically and practically useful form for the lightweight and long-span modular structures, mainly but not only in view of civil engineering and architecture.