In this paper a von Karman equation with memory,utt + α?2u- γ?utt- integral from n=-∞ to t μ(t- s)?2u(s)ds = [u, F(u)] + h is considered. This equation was considered by several authors. Existing results are mainl...In this paper a von Karman equation with memory,utt + α?2u- γ?utt- integral from n=-∞ to t μ(t- s)?2u(s)ds = [u, F(u)] + h is considered. This equation was considered by several authors. Existing results are mainly devoted to global existence and energy decay. However, the existence of attractors has not yet been considered. Thus, we prove the existence and uniqueness of solutions by using Galerkin method, and then show the existence of a finitedimensional global attractor.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of ScienceICT and Future Planning(Grant No.2014R1A1A3A04049561)
文摘In this paper a von Karman equation with memory,utt + α?2u- γ?utt- integral from n=-∞ to t μ(t- s)?2u(s)ds = [u, F(u)] + h is considered. This equation was considered by several authors. Existing results are mainly devoted to global existence and energy decay. However, the existence of attractors has not yet been considered. Thus, we prove the existence and uniqueness of solutions by using Galerkin method, and then show the existence of a finitedimensional global attractor.