Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the ...Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-...This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-bandwidth vs. maximum-phase-noise is suggested to be a new criterion to the performance of SDM,which greatly helps designers to select an appropriate SDM structure to meet their real application requirements and to reduce the cost as low as possible. A low-spur 3-order Mul-tistage Noise Shaping (MASH)-1-1-1 SDM using three 2-bit first-order cascaded modulators is proposed,which balances the requirements of tone-free and maximum operation frequency.展开更多
It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejec...It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.展开更多
Stabilizing unstable operating points is an effective way to enhance process benefits and safety, which motivates the development for a variety of advanced control strategies. The washout filter-aided controller(WFC),...Stabilizing unstable operating points is an effective way to enhance process benefits and safety, which motivates the development for a variety of advanced control strategies. The washout filter-aided controller(WFC), originally used for electric power system and aircraft, has been introduced to adjust the dynamic behavior of chemical process. However, the parameter tuning method faces two major limitations: the dimension of operating variables must be equal to or greater than that of state variables and only one positive real eigenvalue exists in the open loop system. To overcome the two limitations, this paper proposes a new parameter tuning method, so that the WFC is applicable in most chemical processes. By solving a constrained optimization problem, the controller parameters are determined under the constraint that the reassignment of the eigenvalues of the unstable desired operating point can satisfy the stability condition. Thus parts of the equilibrium manifold including the desired operating point are stabilized without affecting the shape of the equilibrium manifold. Finally, the effectiveness of the WFC improved by the proposed parameter tuning method is illustrated through a case study for propanediol anaerobic fermentation.展开更多
The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameter...The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.展开更多
In order to meet the requirements for zero value stability of direct sequence spread spectrum(DSSS) signal processing in high dynamic scenario,digital automatic gain control(AGC) is employed to regulate power.However,...In order to meet the requirements for zero value stability of direct sequence spread spectrum(DSSS) signal processing in high dynamic scenario,digital automatic gain control(AGC) is employed to regulate power.However,conventional AGC causes degradation in the synchronization performance of DSSS receiver.Based on the theoretical analysis of the influence of digital AGC on DSSS signal synchronization,this paper proposes a new AGC algorithm,which is applicable to multi-channel digital DSSS signal receiver.By making power adjustment cycle and synchronization cycle coherent with each other adaptively,the influence of digital AGC on subsequent synchronization processing has been eliminated.Theoretical analysis,simulation results and experimental data verify the validity of the proposed algorithm.By virtue of the proposed algorithm,the influence of digital AGC on DSSS signal synchronization is eliminated.This algorithm applies to an aerospace engineering project successfully.展开更多
A piecewise curvature-corrected bandgap reference (BGR) with negative feedback is proposed. It features employing a temperature-dependent resistor ratio technique to get a piecewise corrected current, which corrects...A piecewise curvature-corrected bandgap reference (BGR) with negative feedback is proposed. It features employing a temperature-dependent resistor ratio technique to get a piecewise corrected current, which corrects the nonlinear temperature dependence of the first-order BGR. The piecewise corrected current generator also forms negative feedback to improve the line regulation and power supply rejection (PSR). Measurement results show the proposed BGR achieves a maximum temperature coefficient (TC) of 21.2ppm/℃ without trimming in the temperature range of - 50-125℃ and a PSR of - 60dB at 2.6V supply voltage. The line regulation is 0.8mV/V in the supply range of 2.6-5.6V. It is successfully implemented in an SMIC 0.35μm 5V n-well digital CMOS process with the effective chip area of 0.04mm^2 and power con- sumption of 0.18mW. The reference is applied in a 3,5V optical receiver trans-impedance amplifier.展开更多
An experimental and theoretical study of steam reforming of dimethyl ether was carried out in a processor for fuel cell vehicles to explore the effect of temperature gradient and hydrogen content of the processor.A st...An experimental and theoretical study of steam reforming of dimethyl ether was carried out in a processor for fuel cell vehicles to explore the effect of temperature gradient and hydrogen content of the processor.A steady-state,laminar,two-dimensional axi-symmetric model was proposed to investigate the fluid flow,heat transfer and chemical reactions in the dimethyl ether steam reforming processor using porous medium approach.The numerical model was established with Star-CD program using SIMPLE algorithm and finite volume method.Experimental verification of the two-dimensional mathematical model was conducted.The numerical results coincided well with the experimental data.The effects of the parameters on the temperature gradient and hydrogen content of the processor were studied using the numerical model.展开更多
We give a method to estimate non-integer power function|u|~ku in modulation space which is an open question in the study of modulation space.As an application,we can study Cauchy problem for the nonlinear Klein-Gordon...We give a method to estimate non-integer power function|u|~ku in modulation space which is an open question in the study of modulation space.As an application,we can study Cauchy problem for the nonlinear Klein-Gordon equation with nonlinear term|u|~ku in modulation space,where k is not an integer.Moreover,we also study the global solution with small initial value for the Klein-Gordon-Hartree equation.The results show some advantages of modulation space both in high and low regularity cases.展开更多
We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangi...We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.展开更多
To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the ex...To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the external waves and the technique of controlling inlet by jet controlling.Three inlets were designed to analyze the feasibility and a numerical simulation method was used to simulate the three inlet flow fields.The adjustment mechanism of the design was studied through analysis of the simulation results.The design was verified by comparing the performances of the three inlets.The study showed that the method of reducing the sealing Mach number of the external wave system can improve the flow coefficient when the inlet works at low Mach numbers.The technique of controlling inlet by jet controlling can homogenize inlet flow fields at high Mach numbers,reduce effective throat area and increase the total pressure recovery(TPR).Adjustable inlets controlled by jet controlling demonstrate good performance at certain working ranges.展开更多
In this paper, by means of Sadovskii fixed point theorem, the authors establish a result concerning the controllability for a class of abstract neutral functional differential systems where the linear part is non-dens...In this paper, by means of Sadovskii fixed point theorem, the authors establish a result concerning the controllability for a class of abstract neutral functional differential systems where the linear part is non-densely defined and satisfies the Hille-Yosida condition. As an application, an example is provided to illustrate the obtained result.展开更多
文摘Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
基金the National Natural Science Foundation of China (No. 60025101, No.90207001, and No. 90307016).
文摘This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-bandwidth vs. maximum-phase-noise is suggested to be a new criterion to the performance of SDM,which greatly helps designers to select an appropriate SDM structure to meet their real application requirements and to reduce the cost as low as possible. A low-spur 3-order Mul-tistage Noise Shaping (MASH)-1-1-1 SDM using three 2-bit first-order cascaded modulators is proposed,which balances the requirements of tone-free and maximum operation frequency.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of PetroleumMinerals (KFUPM) for funding this work through project number 11-ENE1643-04 as part of the Notional Science Technology and Innovation Plan
文摘It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21306100)
文摘Stabilizing unstable operating points is an effective way to enhance process benefits and safety, which motivates the development for a variety of advanced control strategies. The washout filter-aided controller(WFC), originally used for electric power system and aircraft, has been introduced to adjust the dynamic behavior of chemical process. However, the parameter tuning method faces two major limitations: the dimension of operating variables must be equal to or greater than that of state variables and only one positive real eigenvalue exists in the open loop system. To overcome the two limitations, this paper proposes a new parameter tuning method, so that the WFC is applicable in most chemical processes. By solving a constrained optimization problem, the controller parameters are determined under the constraint that the reassignment of the eigenvalues of the unstable desired operating point can satisfy the stability condition. Thus parts of the equilibrium manifold including the desired operating point are stabilized without affecting the shape of the equilibrium manifold. Finally, the effectiveness of the WFC improved by the proposed parameter tuning method is illustrated through a case study for propanediol anaerobic fermentation.
基金Project(60673164) supported by the National Natural Science Foundation of ChinaProject(06JJ10009) supported by the Natural Science Foundation of Hunan Province, China+2 种基金Project(20060533057) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2008CB317107) supported by the Major State Basic Research and Development Program of ChinaProject(NCET-05-0683) supported by the Program for New Century Excellent Talents in University
文摘The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.
基金support of the National High Technology Research and Development Program of China(863)(Grant No.2013AA1548)
文摘In order to meet the requirements for zero value stability of direct sequence spread spectrum(DSSS) signal processing in high dynamic scenario,digital automatic gain control(AGC) is employed to regulate power.However,conventional AGC causes degradation in the synchronization performance of DSSS receiver.Based on the theoretical analysis of the influence of digital AGC on DSSS signal synchronization,this paper proposes a new AGC algorithm,which is applicable to multi-channel digital DSSS signal receiver.By making power adjustment cycle and synchronization cycle coherent with each other adaptively,the influence of digital AGC on subsequent synchronization processing has been eliminated.Theoretical analysis,simulation results and experimental data verify the validity of the proposed algorithm.By virtue of the proposed algorithm,the influence of digital AGC on DSSS signal synchronization is eliminated.This algorithm applies to an aerospace engineering project successfully.
文摘A piecewise curvature-corrected bandgap reference (BGR) with negative feedback is proposed. It features employing a temperature-dependent resistor ratio technique to get a piecewise corrected current, which corrects the nonlinear temperature dependence of the first-order BGR. The piecewise corrected current generator also forms negative feedback to improve the line regulation and power supply rejection (PSR). Measurement results show the proposed BGR achieves a maximum temperature coefficient (TC) of 21.2ppm/℃ without trimming in the temperature range of - 50-125℃ and a PSR of - 60dB at 2.6V supply voltage. The line regulation is 0.8mV/V in the supply range of 2.6-5.6V. It is successfully implemented in an SMIC 0.35μm 5V n-well digital CMOS process with the effective chip area of 0.04mm^2 and power con- sumption of 0.18mW. The reference is applied in a 3,5V optical receiver trans-impedance amplifier.
基金supported by the National Natural Science Foundation of China (50975169)Shanghai Science Technology Committee (620210029)
文摘An experimental and theoretical study of steam reforming of dimethyl ether was carried out in a processor for fuel cell vehicles to explore the effect of temperature gradient and hydrogen content of the processor.A steady-state,laminar,two-dimensional axi-symmetric model was proposed to investigate the fluid flow,heat transfer and chemical reactions in the dimethyl ether steam reforming processor using porous medium approach.The numerical model was established with Star-CD program using SIMPLE algorithm and finite volume method.Experimental verification of the two-dimensional mathematical model was conducted.The numerical results coincided well with the experimental data.The effects of the parameters on the temperature gradient and hydrogen content of the processor were studied using the numerical model.
基金supported by National Natural Science Foundation of China (Grant Nos. 11671363 and 11471288)Natural Science Foundation of Zhejiang Province (Grant No. LQ15A010003)
文摘We give a method to estimate non-integer power function|u|~ku in modulation space which is an open question in the study of modulation space.As an application,we can study Cauchy problem for the nonlinear Klein-Gordon equation with nonlinear term|u|~ku in modulation space,where k is not an integer.Moreover,we also study the global solution with small initial value for the Klein-Gordon-Hartree equation.The results show some advantages of modulation space both in high and low regularity cases.
基金supported by National Basic Research Program of China(973 Program)(Grant No.2010CB732501)National Natural Science Foundation of China(Grant No.11071268)China Scholarship Council Scientific Research Common Program of Beijing Municipal Commission of Education(Grant No.KM201210005033)
文摘We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.
文摘To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the external waves and the technique of controlling inlet by jet controlling.Three inlets were designed to analyze the feasibility and a numerical simulation method was used to simulate the three inlet flow fields.The adjustment mechanism of the design was studied through analysis of the simulation results.The design was verified by comparing the performances of the three inlets.The study showed that the method of reducing the sealing Mach number of the external wave system can improve the flow coefficient when the inlet works at low Mach numbers.The technique of controlling inlet by jet controlling can homogenize inlet flow fields at high Mach numbers,reduce effective throat area and increase the total pressure recovery(TPR).Adjustable inlets controlled by jet controlling demonstrate good performance at certain working ranges.
基金Project supported by the Tianyuan Foundation of Mathematics (No. A0324624)the National Natural Science Founcation of China (No. 10371040)the Shanghai Priority Academic Discipline.
文摘In this paper, by means of Sadovskii fixed point theorem, the authors establish a result concerning the controllability for a class of abstract neutral functional differential systems where the linear part is non-densely defined and satisfies the Hille-Yosida condition. As an application, an example is provided to illustrate the obtained result.