期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的手写数字图像识别方法 被引量:4
1
作者 杨栩 《绵阳师范学院学报》 2020年第2期35-39,共5页
本文使用深度神经网络算法对手写数字图像进行分类识别.该算法利用20个卷积层提取手写数字图像的特征向量,特征向量经过ReLU激活函数后被20个池化层进一步降低向量维度,最后通过softmax激活函数输出.结果表明,训练数据8000以上时识别率... 本文使用深度神经网络算法对手写数字图像进行分类识别.该算法利用20个卷积层提取手写数字图像的特征向量,特征向量经过ReLU激活函数后被20个池化层进一步降低向量维度,最后通过softmax激活函数输出.结果表明,训练数据8000以上时识别率会超过90%,训练次数8次以上识别率高于96%.结论:采用整流线性单元函数作为激活函数,有效解决了梯度消失问题和过拟合问题. 展开更多
关键词 降维 卷积神经网络 池化 整流线性单元函数 梯度消失
下载PDF
基于卷积神经网络的数字图像特征降维算法
2
作者 杨栩 《信息通信》 2019年第11期42-44,共3页
内容针对手写数字的图像特征维度过大的问题,提出了一种改进的深度神经网络算法。该算法利用20个卷积层提取手写数字图像的特征向量,特征向量经过Re LU激活函数后被20个池化层进一步降低向量维度,降维后的数字图像计算量大大降低。采用... 内容针对手写数字的图像特征维度过大的问题,提出了一种改进的深度神经网络算法。该算法利用20个卷积层提取手写数字图像的特征向量,特征向量经过Re LU激活函数后被20个池化层进一步降低向量维度,降维后的数字图像计算量大大降低。采用整流线性单元函数作为激活函数,有效解决了梯度消失问题和过拟合问题。 展开更多
关键词 降维 卷积神经网络 池化 整流线性单元函数 梯度消失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部